telegram/TMessagesProj/jni/voip/tgcalls/v2/NativeNetworkingImpl.cpp
2025-11-22 14:04:28 +01:00

1070 lines
40 KiB
C++

#include "v2/NativeNetworkingImpl.h"
#include "p2p/base/basic_packet_socket_factory.h"
#include "p2p/client/basic_port_allocator.h"
#include "p2p/base/p2p_transport_channel.h"
#include "p2p/base/basic_async_resolver_factory.h"
#include "api/packet_socket_factory.h"
#include "rtc_base/rtc_certificate_generator.h"
#include "p2p/base/ice_credentials_iterator.h"
#include "api/jsep_ice_candidate.h"
#include "p2p/base/dtls_transport.h"
#include "p2p/base/dtls_transport_factory.h"
#include "pc/dtls_srtp_transport.h"
#include "pc/dtls_transport.h"
#include "pc/jsep_transport_controller.h"
#include "api/async_dns_resolver.h"
#include "TurnCustomizerImpl.h"
#include "ReflectorRelayPortFactory.h"
#include "SctpDataChannelProviderInterfaceImpl.h"
#include "StaticThreads.h"
#include "platform/PlatformInterface.h"
#include "p2p/base/turn_port.h"
#include "ReflectorPort.h"
#include "FieldTrialsConfig.h"
#include "EncryptedConnection.h"
namespace tgcalls {
namespace {
bool getCustomParameterBool(std::map<std::string, json11::Json> const &parameters, std::string const &name) {
const auto value = parameters.find(name);
if (value != parameters.end() && value->second.is_bool() && value->second.bool_value()) {
return true;
} else {
return false;
}
}
class CryptStringImpl : public rtc::CryptStringImpl {
public:
CryptStringImpl(std::string const &value) :
_value(value) {
}
virtual ~CryptStringImpl() override {
}
virtual size_t GetLength() const override {
return _value.size();
}
virtual void CopyTo(char* dest, bool nullterminate) const override {
memcpy(dest, _value.data(), _value.size());
if (nullterminate) {
dest[_value.size()] = 0;
}
}
virtual std::string UrlEncode() const override {
return _value;
}
virtual CryptStringImpl* Copy() const override {
return new CryptStringImpl(_value);
}
virtual void CopyRawTo(std::vector<unsigned char>* dest) const override {
dest->resize(_value.size());
memcpy(dest->data(), _value.data(), _value.size());
}
private:
std::string _value;
};
class WrappedAsyncPacketSocket : public rtc::AsyncPacketSocket {
public:
WrappedAsyncPacketSocket(std::unique_ptr<rtc::AsyncPacketSocket> &&wrappedSocket) :
_wrappedSocket(std::move(wrappedSocket)) {
_wrappedSocket->RegisterReceivedPacketCallback([this](AsyncPacketSocket *socket, rtc::ReceivedPacket const &packet) {
this->onReadPacket(packet);
});
_wrappedSocket->SignalSentPacket.connect(this, &WrappedAsyncPacketSocket::onSentPacket);
_wrappedSocket->SignalReadyToSend.connect(this, &WrappedAsyncPacketSocket::onReadyToSend);
_wrappedSocket->SignalAddressReady.connect(this, &WrappedAsyncPacketSocket::onAddressReady);
_wrappedSocket->SignalConnect.connect(this, &WrappedAsyncPacketSocket::onConnect);
_wrappedSocket->SubscribeCloseEvent(this, [this](AsyncPacketSocket* socket, int error) { onClose(socket, error); });
}
virtual ~WrappedAsyncPacketSocket() override {
_wrappedSocket->DeregisterReceivedPacketCallback();
_wrappedSocket->SignalSentPacket.disconnect(this);
_wrappedSocket->SignalReadyToSend.disconnect(this);
_wrappedSocket->SignalAddressReady.disconnect(this);
_wrappedSocket->SignalConnect.disconnect(this);
_wrappedSocket->UnsubscribeCloseEvent(this);
_wrappedSocket.reset();
}
virtual rtc::SocketAddress GetLocalAddress() const override {
return _wrappedSocket->GetLocalAddress();
}
virtual rtc::SocketAddress GetRemoteAddress() const override {
return _wrappedSocket->GetRemoteAddress();
}
virtual int Send(const void* pv, size_t cb, const rtc::PacketOptions& options) override {
return _wrappedSocket->Send(pv, cb, options);
}
virtual int SendTo(const void* pv,
size_t cb,
const rtc::SocketAddress& addr,
const rtc::PacketOptions& options) override {
return _wrappedSocket->SendTo(pv, cb, addr, options);
}
virtual int Close() override {
return _wrappedSocket->Close();
}
virtual State GetState() const override {
return _wrappedSocket->GetState();
}
virtual int GetOption(rtc::Socket::Option opt, int* value) override {
return _wrappedSocket->GetOption(opt, value);
}
virtual int SetOption(rtc::Socket::Option opt, int value) override {
return _wrappedSocket->SetOption(opt, value);
}
virtual int GetError() const override {
return _wrappedSocket->GetError();
}
virtual void SetError(int error) override {
_wrappedSocket->SetError(error);
}
private:
void onReadPacket(rtc::ReceivedPacket const &packet) {
NotifyPacketReceived(packet);
}
void onSentPacket(AsyncPacketSocket *socket, const rtc::SentPacket &packet) {
SignalSentPacket.emit(this, packet);
}
void onReadyToSend(AsyncPacketSocket *socket) {
SignalReadyToSend.emit(this);
}
void onAddressReady(AsyncPacketSocket *socket, const rtc::SocketAddress &address) {
SignalAddressReady.emit(this, address);
}
void onConnect(AsyncPacketSocket *socket) {
SignalConnect.emit(this);
}
void onClose(AsyncPacketSocket *socket, int value) {
SignalClose(this, value);
}
private:
std::unique_ptr<rtc::AsyncPacketSocket> _wrappedSocket;
};
class WrappedBasicPacketSocketFactory : public rtc::PacketSocketFactory {
public:
WrappedBasicPacketSocketFactory(std::unique_ptr<rtc::BasicPacketSocketFactory> &&impl, bool standaloneReflectorMode) :
_impl(std::move(impl)),
_standaloneReflectorMode(standaloneReflectorMode) {
}
virtual ~WrappedBasicPacketSocketFactory() {
}
virtual rtc::AsyncPacketSocket *CreateUdpSocket(const rtc::SocketAddress& address, uint16_t min_port, uint16_t max_port) override {
in_addr v4addr;
inet_pton(AF_INET, "0.1.2.3", &v4addr);
rtc::IPAddress ipAddress(v4addr);
if (_standaloneReflectorMode && address.ipaddr() == ipAddress && address.port() != 12345) {
return nullptr;
} else {
rtc::SocketAddress updatedAddress = address;
if (updatedAddress.port() == 12345) {
updatedAddress.SetPort(0);
}
return _impl->CreateUdpSocket(updatedAddress, min_port, max_port);
}
}
virtual rtc::AsyncListenSocket *CreateServerTcpSocket(const rtc::SocketAddress &local_address, uint16_t min_port, uint16_t max_port, int opts) override {
in_addr v4addr;
inet_pton(AF_INET, "0.1.2.3", &v4addr);
rtc::IPAddress ipAddress(v4addr);
if (_standaloneReflectorMode && local_address.ipaddr() == ipAddress) {
return nullptr;
} else {
return _impl->CreateServerTcpSocket(local_address, min_port, max_port, opts);
}
}
virtual rtc::AsyncPacketSocket *CreateClientTcpSocket(const rtc::SocketAddress &local_address, const rtc::SocketAddress& remote_address, const rtc::ProxyInfo& proxy_info, const std::string &user_agent, const rtc::PacketSocketTcpOptions& tcp_options) override {
in_addr v4addr;
inet_pton(AF_INET, "0.1.2.3", &v4addr);
rtc::IPAddress ipAddress(v4addr);
if (_standaloneReflectorMode && local_address.ipaddr() == ipAddress) {
return nullptr;
} else {
return _impl->CreateClientTcpSocket(local_address, remote_address, proxy_info, user_agent, tcp_options);
}
}
virtual std::unique_ptr<webrtc::AsyncDnsResolverInterface> CreateAsyncDnsResolver() override {
return _impl->CreateAsyncDnsResolver();
}
private:
std::unique_ptr<rtc::BasicPacketSocketFactory> _impl;
bool _standaloneReflectorMode = false;
};
class WrappedNetworkManager: public rtc::NetworkManager, public sigslot::has_slots<> {
public:
WrappedNetworkManager(rtc::NetworkMonitorFactory *networkMonitorFactory, rtc::SocketFactory *socketFactory) {
in_addr v4addr;
inet_pton(AF_INET, "0.1.2.3", &v4addr);
rtc::IPAddress ipAddress(v4addr);
_sharedReflectorNetwork = std::make_unique<rtc::Network>(
"shared-reflector-network",
"shared-reflector-network",
ipAddress,
0,
rtc::AdapterType::ADAPTER_TYPE_UNKNOWN
);
_sharedReflectorNetwork->AddIP(ipAddress);
_impl = std::make_unique<rtc::BasicNetworkManager>(networkMonitorFactory, socketFactory);
_impl->SignalNetworksChanged.connect(this, &WrappedNetworkManager::PassthroughSignalNetworksChanged);
_impl->SignalError.connect(this, &WrappedNetworkManager::PassthroughSignalError);
}
public:
void PassthroughSignalNetworksChanged() {
SignalNetworksChanged();
}
void PassthroughSignalError() {
SignalError();
}
virtual void Initialize() override {
_impl->Initialize();
}
virtual void StartUpdating() override {
_impl->StartUpdating();
}
virtual void StopUpdating() override {
_impl->StopUpdating();
}
virtual std::vector<const rtc::Network *> GetNetworks() const override {
//return _impl->GetNetworks();
std::vector<const rtc::Network *> result;
result.push_back(_sharedReflectorNetwork.get());
return result;
}
virtual EnumerationPermission enumeration_permission() const override {
return _impl->enumeration_permission();
}
virtual std::vector<const rtc::Network *> GetAnyAddressNetworks() override {
return _impl->GetAnyAddressNetworks();
}
virtual void DumpNetworks() override {
_impl->DumpNetworks();
}
bool GetDefaultLocalAddress(int family, rtc::IPAddress *ipaddr) const override {
return _impl->GetDefaultLocalAddress(family, ipaddr);
}
webrtc::MdnsResponderInterface* GetMdnsResponder() const override {
return _impl->GetMdnsResponder();
}
virtual void set_vpn_list(const std::vector<rtc::NetworkMask> &vpn) override {
_impl->set_vpn_list(vpn);
}
private:
std::unique_ptr<rtc::BasicNetworkManager> _impl;
std::unique_ptr<rtc::Network> _sharedReflectorNetwork;
};
class MtProtoPacketTransport : public rtc::PacketTransportInternal {
public:
MtProtoPacketTransport(
rtc::PacketTransportInternal *rawTransport,
EncryptionKey encryptionKey
) :
_rawTransport(rawTransport) {
_rawTransport->SignalWritableState.connect(this, &MtProtoPacketTransport::InternalOnWritableState);
_rawTransport->SignalReadyToSend.connect(this, &MtProtoPacketTransport::InternalOnReadyToSend);
_rawTransport->SignalReceivingState.connect(this, &MtProtoPacketTransport::InternalOnReceivingState);
_rawTransport->SignalReadPacket.connect(this, &MtProtoPacketTransport::InternalOnReadPacket);
_rawTransport->SignalSentPacket.connect(this, &MtProtoPacketTransport::InternalOnSentPacket);
_rawTransport->SignalNetworkRouteChanged.connect(this, &MtProtoPacketTransport::InternalOnNetworkRouteChanged);
_rawTransport->SignalClosed.connect(this, &MtProtoPacketTransport::InternalOnClosed);
_transportEncryption = std::make_unique<EncryptedConnection>(
EncryptedConnection::Type::Transport,
encryptionKey,
[=](int delayMs, int cause) {
}
);
}
virtual ~MtProtoPacketTransport() {
_rawTransport->SignalWritableState.disconnect(this);
_rawTransport->SignalReadyToSend.disconnect(this);
_rawTransport->SignalReceivingState.disconnect(this);
_rawTransport->SignalReadPacket.disconnect(this);
_rawTransport->SignalSentPacket.disconnect(this);
_rawTransport->SignalNetworkRouteChanged.disconnect(this);
_rawTransport->SignalClosed.disconnect(this);
}
virtual const std::string& transport_name() const override {
return _rawTransport->transport_name();
}
virtual bool writable() const override {
return _rawTransport->writable();
}
virtual bool receiving() const override {
return _rawTransport->receiving();
}
virtual int SendPacket(
const char *data,
size_t len,
const rtc::PacketOptions &options,
int flags
) override {
if (flags != 0) {
rtc::CopyOnWriteBuffer buffer;
buffer.AppendData((const unsigned char *)data, len);
SendPacketInternal(buffer, options);
return 0;
} else {
rtc::CopyOnWriteBuffer buffer;
uint32_t magic = 0xdcdcdcdc; // SCTP
buffer.AppendData((const unsigned char *)&magic, 4);
buffer.AppendData((const unsigned char *)data, len);
SendPacketInternal(buffer, options);
return 0;
}
}
virtual int SetOption(rtc::Socket::Option opt, int value) override {
return _rawTransport->SetOption(opt, value);
}
virtual bool GetOption(rtc::Socket::Option opt, int* value) override {
return _rawTransport->GetOption(opt, value);
}
virtual int GetError() override {
return _rawTransport->GetError();
}
virtual absl::optional<rtc::NetworkRoute> network_route() const override {
return _rawTransport->network_route();
}
private:
void InternalOnWritableState(PacketTransportInternal *transport) {
SignalWritableState(this);
}
void InternalOnReadyToSend(PacketTransportInternal *transport) {
SignalReadyToSend(this);
}
void InternalOnReceivingState(PacketTransportInternal *transport) {
SignalReceivingState(this);
}
void InternalOnReadPacket(PacketTransportInternal *transport, const char *data, size_t size, const int64_t &timestamp, int flags) {
if (const auto packet = _transportEncryption->handleIncomingRawPacket(data, size)) {
ProcessReadPacketInternal(packet.value().main.message, timestamp);
for (const auto &additional : packet.value().additional) {
ProcessReadPacketInternal(additional.message, timestamp);
}
}
}
void InternalOnSentPacket(PacketTransportInternal *transport, const rtc::SentPacket &packet) {
SignalSentPacket(this, packet);
}
void InternalOnNetworkRouteChanged(absl::optional<rtc::NetworkRoute> route) {
SignalNetworkRouteChanged(route);
}
void InternalOnClosed(PacketTransportInternal *transport) {
SignalClosed(this);
}
private:
void SendPacketInternal(rtc::CopyOnWriteBuffer &packet, const rtc::PacketOptions &options) {
if (const auto encryptedPacket = _transportEncryption->prepareForSendingRawMessage(packet, false)) {
_rawTransport->SendPacket((const char *)encryptedPacket->bytes.data(), encryptedPacket->bytes.size(), options);
}
}
void ProcessReadPacketInternal(rtc::CopyOnWriteBuffer const &data, int64_t timestamp) {
if (data.size() >= 4) {
uint32_t header = 0;
memcpy(&header, data.data(), 4);
uint32_t magic = 0xdcdcdcdc; // SCTP
if (header == magic) {
SignalReadPacket(this, (const char *)(data.data() + 4), data.size() - 4, timestamp, 0);
} else {
SignalReadPacket(this, (const char *)data.data(), data.size(), timestamp, 1);
}
} else {
SignalReadPacket(this, (const char *)data.data(), data.size(), timestamp, 1);
}
}
private:
rtc::PacketTransportInternal *_rawTransport = nullptr;
std::unique_ptr<EncryptedConnection> _transportEncryption;
};
class MtProtoRtpTransport : public webrtc::RtpTransport {
public:
explicit MtProtoRtpTransport(cricket::IceTransportInternal *iceTransport, EncryptionKey encryptionKey) :
webrtc::RtpTransport(true) {
_packetTransport = std::make_unique<MtProtoPacketTransport>(iceTransport, encryptionKey);
SetRtpPacketTransport(_packetTransport.get());
}
virtual bool IsSrtpActive() const override {
return true;
}
virtual void OnWritableState(rtc::PacketTransportInternal *packet_transport) override {
webrtc::RtpTransport::OnWritableState(packet_transport);
SignalWritableState(packet_transport);
}
public:
sigslot::signal1<rtc::PacketTransportInternal *> SignalWritableState;
sigslot::signal1<rtc::PacketTransportInternal *> SignalReceivingState;
private:
std::unique_ptr<MtProtoPacketTransport> _packetTransport;
};
}
InstanceNetworking::ConnectionDescription::CandidateDescription InstanceNetworking::connectionDescriptionFromCandidate(cricket::Candidate const &candidate) {
InstanceNetworking::ConnectionDescription::CandidateDescription result;
result.type = candidate.type();
result.protocol = candidate.protocol();
result.address = candidate.address().ToString();
return result;
}
webrtc::CryptoOptions NativeNetworkingImpl::getDefaulCryptoOptions() {
auto options = webrtc::CryptoOptions();
options.srtp.enable_aes128_sha1_80_crypto_cipher = true;
options.srtp.enable_gcm_crypto_suites = true;
return options;
}
NativeNetworkingImpl::NativeNetworkingImpl(Configuration &&configuration) :
_threads(std::move(configuration.threads)),
_isOutgoing(configuration.isOutgoing),
_encryptionKey(configuration.encryptionKey),
_enableStunMarking(configuration.enableStunMarking),
_enableTCP(configuration.enableTCP),
_enableP2P(configuration.enableP2P),
_rtcServers(configuration.rtcServers),
_proxy(configuration.proxy),
_customParameters(configuration.customParameters),
_stateUpdated(std::move(configuration.stateUpdated)),
_candidateGathered(std::move(configuration.candidateGathered)),
_transportMessageReceived(std::move(configuration.transportMessageReceived)),
_rtcpPacketReceived(std::move(configuration.rtcpPacketReceived)),
_dataChannelStateUpdated(configuration.dataChannelStateUpdated),
_dataChannelMessageReceived(configuration.dataChannelMessageReceived) {
assert(_threads->getNetworkThread()->IsCurrent());
_localIceParameters = PeerIceParameters(rtc::CreateRandomString(cricket::ICE_UFRAG_LENGTH), rtc::CreateRandomString(cricket::ICE_PWD_LENGTH), true);
_localCertificate = rtc::RTCCertificateGenerator::GenerateCertificate(rtc::KeyParams(rtc::KT_ECDSA), absl::nullopt);
_underlyingSocketFactory = _threads->getNetworkThread()->socketserver();
_networkMonitorFactory = PlatformInterface::SharedInstance()->createNetworkMonitorFactory();
if (getCustomParameterBool(_customParameters, "network_standalone_reflectors")) {
_socketFactory = std::make_unique<WrappedBasicPacketSocketFactory>(std::make_unique<rtc::BasicPacketSocketFactory>(_threads->getNetworkThread()->socketserver()), true);
_networkManager = std::make_unique<WrappedNetworkManager>(_networkMonitorFactory.get(), _threads->getNetworkThread()->socketserver());
} else {
_socketFactory = std::make_unique<rtc::BasicPacketSocketFactory>(_threads->getNetworkThread()->socketserver());
_networkManager = std::make_unique<rtc::BasicNetworkManager>(_networkMonitorFactory.get(), _threads->getNetworkThread()->socketserver());
}
_asyncResolverFactory = std::make_unique<webrtc::BasicAsyncDnsResolverFactory>();
if (getCustomParameterBool(_customParameters, "network_use_mtproto")) {
} else {
_dtlsSrtpTransport = std::make_unique<webrtc::DtlsSrtpTransport>(true, fieldTrialsBasedConfig);
_dtlsSrtpTransport->SetDtlsTransports(nullptr, nullptr);
_dtlsSrtpTransport->SetActiveResetSrtpParams(false);
_dtlsSrtpTransport->SubscribeReadyToSend(this, [this](bool value) {
this->DtlsReadyToSend(value);
});
_dtlsSrtpTransport->SubscribeRtcpPacketReceived(this, [this](rtc::CopyOnWriteBuffer *packet, int64_t timestamp) {
this->OnRtcpPacketReceived_n(packet, timestamp);
});
}
resetDtlsSrtpTransport();
}
NativeNetworkingImpl::~NativeNetworkingImpl() {
assert(_threads->getNetworkThread()->IsCurrent());
RTC_LOG(LS_INFO) << "NativeNetworkingImpl::~NativeNetworkingImpl()";
_mtProtoRtpTransport.reset();
_dtlsSrtpTransport.reset();
_dtlsTransport.reset();
_dataChannelInterface.reset();
_transportChannel.reset();
_asyncResolverFactory.reset();
_portAllocator.reset();
_networkManager.reset();
_underlyingSocketFactory = nullptr;
_socketFactory.reset();
_networkMonitorFactory.reset();
}
void NativeNetworkingImpl::resetDtlsSrtpTransport() {
if (_enableStunMarking) {
_turnCustomizer.reset(new TurnCustomizerImpl());
}
bool standaloneReflectorMode = getCustomParameterBool(_customParameters, "network_standalone_reflectors");
uint32_t standaloneReflectorRoleId = 0;
if (standaloneReflectorMode) {
if (_isOutgoing) {
standaloneReflectorRoleId = 1;
} else {
standaloneReflectorRoleId = 2;
}
}
_relayPortFactory.reset(new ReflectorRelayPortFactory(_rtcServers, standaloneReflectorMode, standaloneReflectorRoleId, _underlyingSocketFactory));
_portAllocator.reset(new cricket::BasicPortAllocator(_networkManager.get(), _socketFactory.get(), _turnCustomizer.get(), _relayPortFactory.get()));
uint32_t flags = _portAllocator->flags();
if (getCustomParameterBool(_customParameters, "network_use_default_route")) {
flags |= cricket::PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION;
}
if (getCustomParameterBool(_customParameters, "network_enable_shared_socket")) {
flags |= cricket::PORTALLOCATOR_ENABLE_SHARED_SOCKET;
}
flags |=
cricket::PORTALLOCATOR_ENABLE_IPV6 |
cricket::PORTALLOCATOR_ENABLE_IPV6_ON_WIFI;
if (!_enableTCP) {
flags |= cricket::PORTALLOCATOR_DISABLE_TCP;
}
if (_proxy || !_enableP2P) {
flags |= cricket::PORTALLOCATOR_DISABLE_UDP;
flags |= cricket::PORTALLOCATOR_DISABLE_STUN;
uint32_t candidateFilter = _portAllocator->candidate_filter();
candidateFilter &= ~(cricket::CF_REFLEXIVE);
_portAllocator->SetCandidateFilter(candidateFilter);
}
_portAllocator->set_step_delay(cricket::kMinimumStepDelay);
_portAllocator->set_flags(flags);
_portAllocator->Initialize();
cricket::ServerAddresses stunServers;
std::vector<cricket::RelayServerConfig> turnServers;
for (auto &server : _rtcServers) {
if (server.isTurn) {
turnServers.push_back(cricket::RelayServerConfig(
rtc::SocketAddress(server.host, server.port),
server.login,
server.password,
server.isTcp ? cricket::PROTO_TCP : cricket::PROTO_UDP
));
} else {
rtc::SocketAddress stunAddress = rtc::SocketAddress(server.host, server.port);
stunServers.insert(stunAddress);
}
}
_portAllocator->SetConfiguration(stunServers, turnServers, 0, webrtc::NO_PRUNE, _turnCustomizer.get());
webrtc::IceTransportInit iceTransportInit;
iceTransportInit.set_port_allocator(_portAllocator.get());
iceTransportInit.set_async_dns_resolver_factory(_asyncResolverFactory.get());
_transportChannel = cricket::P2PTransportChannel::Create("transport", 0, std::move(iceTransportInit));
cricket::IceConfig iceConfig;
iceConfig.continual_gathering_policy = cricket::GATHER_CONTINUALLY;
iceConfig.prioritize_most_likely_candidate_pairs = true;
iceConfig.regather_on_failed_networks_interval = cricket::REGATHER_ON_FAILED_NETWORKS_INTERVAL;
if (getCustomParameterBool(_customParameters, "network_skip_initial_ping")) {
iceConfig.presume_writable_when_fully_relayed = true;
}
_transportChannel->SetIceConfig(iceConfig);
cricket::IceParameters localIceParameters(
_localIceParameters.ufrag,
_localIceParameters.pwd,
_localIceParameters.supportsRenomination
);
_transportChannel->SetIceParameters(localIceParameters);
_transportChannel->SetIceRole(_isOutgoing ? cricket::ICEROLE_CONTROLLING : cricket::ICEROLE_CONTROLLED);
_transportChannel->SetRemoteIceMode(cricket::ICEMODE_FULL);
_transportChannel->SignalCandidateGathered.connect(this, &NativeNetworkingImpl::candidateGathered);
_transportChannel->SignalIceTransportStateChanged.connect(this, &NativeNetworkingImpl::transportStateChanged);
_transportChannel->SetCandidatePairChangeCallback([this](cricket::CandidatePairChangeEvent const &event) {
this->candidatePairChanged(event);
});
_transportChannel->SignalNetworkRouteChanged.connect(this, &NativeNetworkingImpl::transportRouteChanged);
if (getCustomParameterBool(_customParameters, "network_use_mtproto")) {
_mtProtoRtpTransport = std::make_unique<MtProtoRtpTransport>(_transportChannel.get(), _encryptionKey);
((MtProtoRtpTransport *)_mtProtoRtpTransport.get())->SignalWritableState.connect(this, &NativeNetworkingImpl::OnTransportWritableState_n);
((MtProtoRtpTransport *)_mtProtoRtpTransport.get())->SignalReceivingState.connect(this, &NativeNetworkingImpl::OnTransportReceivingState_n);
_mtProtoRtpTransport->SubscribeReadyToSend(this, [this](bool value) {
this->DtlsReadyToSend(value);
});
_mtProtoRtpTransport->SubscribeRtcpPacketReceived(this, [this](rtc::CopyOnWriteBuffer *packet, int64_t timestamp) {
this->OnRtcpPacketReceived_n(packet, timestamp);
});
} else {
webrtc::CryptoOptions cryptoOptions = NativeNetworkingImpl::getDefaulCryptoOptions();
_dtlsTransport.reset(new cricket::DtlsTransport(_transportChannel.get(), cryptoOptions, nullptr));
_dtlsTransport->SignalWritableState.connect(this, &NativeNetworkingImpl::OnTransportWritableState_n);
_dtlsTransport->SignalReceivingState.connect(this, &NativeNetworkingImpl::OnTransportReceivingState_n);
_dtlsTransport->SetLocalCertificate(_localCertificate);
_dtlsSrtpTransport->SetDtlsTransports(_dtlsTransport.get(), nullptr);
}
}
void NativeNetworkingImpl::start() {
_transportChannel->MaybeStartGathering();
rtc::PacketTransportInternal *sctpPacketTransport = nullptr;
if (_mtProtoRtpTransport) {
sctpPacketTransport = _mtProtoRtpTransport->rtp_packet_transport();
} else {
sctpPacketTransport = _dtlsTransport.get();
}
const auto weak = std::weak_ptr<NativeNetworkingImpl>(shared_from_this());
_dataChannelInterface.reset(new SctpDataChannelProviderInterfaceImpl(
sctpPacketTransport,
_isOutgoing,
[weak, threads = _threads](bool state) {
assert(threads->getNetworkThread()->IsCurrent());
const auto strong = weak.lock();
if (!strong) {
return;
}
strong->_dataChannelStateUpdated(state);
},
[weak, threads = _threads]() {
assert(threads->getNetworkThread()->IsCurrent());
const auto strong = weak.lock();
if (!strong) {
return;
}
//strong->restartDataChannel();
},
[weak, threads = _threads](std::string const &message) {
assert(threads->getNetworkThread()->IsCurrent());
const auto strong = weak.lock();
if (!strong) {
return;
}
strong->_dataChannelMessageReceived(message);
},
_threads
));
_lastDisconnectedTimestamp = rtc::TimeMillis();
checkConnectionTimeout();
}
void NativeNetworkingImpl::stop() {
_transportChannel->SignalCandidateGathered.disconnect(this);
_transportChannel->SignalIceTransportStateChanged.disconnect(this);
_transportChannel->SignalReadPacket.disconnect(this);
_transportChannel->SignalNetworkRouteChanged.disconnect(this);
_dataChannelInterface.reset();
if (_dtlsTransport) {
_dtlsTransport->SignalWritableState.disconnect(this);
_dtlsTransport->SignalReceivingState.disconnect(this);
}
if (_dtlsSrtpTransport) {
_dtlsSrtpTransport->SetDtlsTransports(nullptr, nullptr);
}
if (_mtProtoRtpTransport) {
((MtProtoRtpTransport *)_mtProtoRtpTransport.get())->SignalWritableState.disconnect(this);
((MtProtoRtpTransport *)_mtProtoRtpTransport.get())->SignalReceivingState.disconnect(this);
_mtProtoRtpTransport.reset();
}
_dtlsTransport.reset();
_transportChannel.reset();
_portAllocator.reset();
_localIceParameters = PeerIceParameters(rtc::CreateRandomString(cricket::ICE_UFRAG_LENGTH), rtc::CreateRandomString(cricket::ICE_PWD_LENGTH), true);
_localCertificate = rtc::RTCCertificateGenerator::GenerateCertificate(rtc::KeyParams(rtc::KT_ECDSA), absl::nullopt);
}
PeerIceParameters NativeNetworkingImpl::getLocalIceParameters() {
return _localIceParameters;
}
std::unique_ptr<rtc::SSLFingerprint> NativeNetworkingImpl::getLocalFingerprint() {
auto certificate = _localCertificate;
if (!certificate) {
return nullptr;
}
return rtc::SSLFingerprint::CreateFromCertificate(*certificate);
}
void NativeNetworkingImpl::setRemoteParams(PeerIceParameters const &remoteIceParameters, rtc::SSLFingerprint *fingerprint, std::string const &sslSetup) {
_remoteIceParameters = remoteIceParameters;
cricket::IceParameters parameters(
remoteIceParameters.ufrag,
remoteIceParameters.pwd,
remoteIceParameters.supportsRenomination
);
_transportChannel->SetRemoteIceParameters(parameters);
rtc::SSLRole sslRole;
if (sslSetup == "active") {
sslRole = rtc::SSLRole::SSL_SERVER;
} else if (sslSetup == "passive") {
sslRole = rtc::SSLRole::SSL_CLIENT;
} else {
sslRole = _isOutgoing ? rtc::SSLRole::SSL_CLIENT : rtc::SSLRole::SSL_SERVER;
}
if (fingerprint) {
if (_dtlsTransport) {
_dtlsTransport->SetRemoteParameters(fingerprint->algorithm, fingerprint->digest.data(), fingerprint->digest.size(), sslRole);
}
}
processPendingLocalStandaloneReflectorCandidates();
}
void NativeNetworkingImpl::addCandidates(std::vector<cricket::Candidate> const &candidates) {
bool standaloneReflectorMode = getCustomParameterBool(_customParameters, "network_standalone_reflectors");
for (const auto &candidate : candidates) {
if (standaloneReflectorMode) {
if (absl::EndsWith(candidate.address().hostname(), ".reflector")) {
continue;
}
}
_transportChannel->AddRemoteCandidate(candidate);
}
}
void NativeNetworkingImpl::sendDataChannelMessage(std::string const &message) {
if (_dataChannelInterface) {
_dataChannelInterface->sendDataChannelMessage(message);
}
}
webrtc::RtpTransport *NativeNetworkingImpl::getRtpTransport() {
if (_mtProtoRtpTransport) {
return _mtProtoRtpTransport.get();
} else {
return _dtlsSrtpTransport.get();
}
}
void NativeNetworkingImpl::checkConnectionTimeout() {
const auto weak = std::weak_ptr<NativeNetworkingImpl>(shared_from_this());
_threads->getNetworkThread()->PostDelayedTask([weak]() {
auto strong = weak.lock();
if (!strong) {
return;
}
int64_t currentTimestamp = rtc::TimeMillis();
const int64_t maxTimeout = 20000;
if (!strong->_isConnected && strong->_lastDisconnectedTimestamp + maxTimeout < currentTimestamp) {
RTC_LOG(LS_INFO) << "NativeNetworkingImpl timeout " << (currentTimestamp - strong->_lastDisconnectedTimestamp) << " ms";
strong->_isFailed = true;
strong->notifyStateUpdated();
}
strong->checkConnectionTimeout();
}, webrtc::TimeDelta::Millis(1000));
}
void NativeNetworkingImpl::candidateGathered(cricket::IceTransportInternal *transport, const cricket::Candidate &candidate) {
assert(_threads->getNetworkThread()->IsCurrent());
bool standaloneReflectorMode = getCustomParameterBool(_customParameters, "network_standalone_reflectors");
if (standaloneReflectorMode && absl::EndsWith(candidate.address().hostname(), ".reflector")) {
_pendingLocalStandaloneReflectorCandidates.push_back(candidate);
if (_remoteIceParameters) {
processPendingLocalStandaloneReflectorCandidates();
}
} else {
_candidateGathered(candidate);
}
}
void NativeNetworkingImpl::processPendingLocalStandaloneReflectorCandidates() {
if (!_remoteIceParameters) {
return;
}
auto candidates = _pendingLocalStandaloneReflectorCandidates;
_pendingLocalStandaloneReflectorCandidates.clear();
for (const auto &candidate : candidates) {
auto remoteHostname = candidate.address().hostname();
if (!remoteHostname.empty()) {
uint32_t standaloneReflectorRoleId = 0;
if (_isOutgoing) {
standaloneReflectorRoleId = 1;
} else {
standaloneReflectorRoleId = 2;
}
std::string prefixFormat = "reflector-";
std::string suffixFormat = "-" + std::to_string(standaloneReflectorRoleId) + ".reflector";
if (!absl::StartsWith(remoteHostname, prefixFormat) || !absl::EndsWith(remoteHostname, suffixFormat)) {
return;
}
auto startPosition = prefixFormat.size();
auto tagString = remoteHostname.substr(startPosition, remoteHostname.size() - suffixFormat.size() - startPosition);
std::stringstream tagStringStream(tagString);
uint32_t resolvedServerId = 0;
tagStringStream >> resolvedServerId;
uint32_t remoteReflectorRoleId = 0;
if (!_isOutgoing) {
remoteReflectorRoleId = 1;
} else {
remoteReflectorRoleId = 2;
}
if (resolvedServerId != 0) {
cricket::Candidate remoteCandidate = candidate;
rtc::SocketAddress address = remoteCandidate.address();
const auto remoteHost = "reflector-" + std::to_string(resolvedServerId) + "-" + std::to_string(remoteReflectorRoleId) + ".reflector";
address.SetIP(remoteHost);
address.SetResolvedIP(remoteCandidate.address().ipaddr());
remoteCandidate.set_address(address);
remoteCandidate.set_username(_remoteIceParameters->ufrag);
remoteCandidate.set_password(_remoteIceParameters->pwd);
_transportChannel->AddRemoteCandidate(remoteCandidate);
}
}
}
}
void NativeNetworkingImpl::candidateGatheringState(cricket::IceTransportInternal *transport) {
assert(_threads->getNetworkThread()->IsCurrent());
}
void NativeNetworkingImpl::OnTransportWritableState_n(rtc::PacketTransportInternal *transport) {
assert(_threads->getNetworkThread()->IsCurrent());
UpdateAggregateStates_n();
}
void NativeNetworkingImpl::OnTransportReceivingState_n(rtc::PacketTransportInternal *transport) {
assert(_threads->getNetworkThread()->IsCurrent());
UpdateAggregateStates_n();
}
void NativeNetworkingImpl::DtlsReadyToSend(bool isReadyToSend) {
UpdateAggregateStates_n();
if (isReadyToSend) {
const auto weak = std::weak_ptr<NativeNetworkingImpl>(shared_from_this());
_threads->getNetworkThread()->PostTask([weak]() {
const auto strong = weak.lock();
if (!strong) {
return;
}
strong->UpdateAggregateStates_n();
});
}
}
void NativeNetworkingImpl::transportStateChanged(cricket::IceTransportInternal *transport) {
UpdateAggregateStates_n();
}
void NativeNetworkingImpl::transportReadyToSend(cricket::IceTransportInternal *transport) {
assert(_threads->getNetworkThread()->IsCurrent());
}
void NativeNetworkingImpl::transportRouteChanged(absl::optional<rtc::NetworkRoute> route) {
assert(_threads->getNetworkThread()->IsCurrent());
if (route.has_value()) {
/*cricket::IceTransportStats iceTransportStats;
if (_transportChannel->GetStats(&iceTransportStats)) {
}*/
RTC_LOG(LS_INFO) << "NativeNetworkingImpl route changed: " << route->DebugString();
bool localIsWifi = route->local.adapter_type() == rtc::AdapterType::ADAPTER_TYPE_WIFI;
bool remoteIsWifi = route->remote.adapter_type() == rtc::AdapterType::ADAPTER_TYPE_WIFI;
RTC_LOG(LS_INFO) << "NativeNetworkingImpl is wifi: local=" << localIsWifi << ", remote=" << remoteIsWifi;
std::string localDescription = route->local.uses_turn() ? "turn" : "p2p";
std::string remoteDescription = route->remote.uses_turn() ? "turn" : "p2p";
RouteDescription routeDescription(localDescription, remoteDescription);
if (!_currentRouteDescription || routeDescription != _currentRouteDescription.value()) {
_currentRouteDescription = std::move(routeDescription);
notifyStateUpdated();
}
}
}
void NativeNetworkingImpl::candidatePairChanged(cricket::CandidatePairChangeEvent const &event) {
ConnectionDescription connectionDescription;
connectionDescription.local = InstanceNetworking::connectionDescriptionFromCandidate(event.selected_candidate_pair.local);
connectionDescription.remote = InstanceNetworking::connectionDescriptionFromCandidate(event.selected_candidate_pair.remote);
if (!_currentConnectionDescription || _currentConnectionDescription.value() != connectionDescription) {
_currentConnectionDescription = std::move(connectionDescription);
notifyStateUpdated();
}
}
void NativeNetworkingImpl::RtpPacketReceived_n(rtc::CopyOnWriteBuffer *packet, int64_t packet_time_us, bool isUnresolved) {
if (_transportMessageReceived) {
_transportMessageReceived(*packet, isUnresolved);
}
}
void NativeNetworkingImpl::OnRtcpPacketReceived_n(rtc::CopyOnWriteBuffer *packet, int64_t packet_time_us) {
if (_rtcpPacketReceived) {
_rtcpPacketReceived(*packet, packet_time_us);
}
}
void NativeNetworkingImpl::UpdateAggregateStates_n() {
assert(_threads->getNetworkThread()->IsCurrent());
auto state = _transportChannel->GetIceTransportState();
bool isConnected = false;
switch (state) {
case webrtc::IceTransportState::kConnected:
case webrtc::IceTransportState::kCompleted:
isConnected = true;
break;
default:
break;
}
if (_mtProtoRtpTransport) {
if (!_mtProtoRtpTransport->IsWritable(false)) {
isConnected = false;
}
} else {
if (!_dtlsSrtpTransport->IsWritable(false)) {
isConnected = false;
}
}
if (_isConnected != isConnected) {
_isConnected = isConnected;
if (!isConnected) {
_lastDisconnectedTimestamp = rtc::TimeMillis();
}
notifyStateUpdated();
if (_dataChannelInterface) {
_dataChannelInterface->updateIsConnected(isConnected);
}
}
}
void NativeNetworkingImpl::notifyStateUpdated() {
NativeNetworkingImpl::State emitState;
emitState.isReadyToSendData = _isConnected;
emitState.route = _currentRouteDescription;
emitState.connection = _currentConnectionDescription;
emitState.isFailed = _isFailed;
_stateUpdated(emitState);
}
void NativeNetworkingImpl::sctpReadyToSendData() {
}
} // namespace tgcalls