Repo created
This commit is contained in:
parent
81b91f4139
commit
f8c34fa5ee
22732 changed files with 4815320 additions and 2 deletions
145
TMessagesProj/jni/voip/webrtc/rtc_base/rolling_accumulator.h
Normal file
145
TMessagesProj/jni/voip/webrtc/rtc_base/rolling_accumulator.h
Normal file
|
|
@ -0,0 +1,145 @@
|
|||
/*
|
||||
* Copyright 2011 The WebRTC Project Authors. All rights reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#ifndef RTC_BASE_ROLLING_ACCUMULATOR_H_
|
||||
#define RTC_BASE_ROLLING_ACCUMULATOR_H_
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
|
||||
#include "rtc_base/checks.h"
|
||||
#include "rtc_base/numerics/running_statistics.h"
|
||||
|
||||
namespace rtc {
|
||||
|
||||
// RollingAccumulator stores and reports statistics
|
||||
// over N most recent samples.
|
||||
//
|
||||
// T is assumed to be an int, long, double or float.
|
||||
template <typename T>
|
||||
class RollingAccumulator {
|
||||
public:
|
||||
explicit RollingAccumulator(size_t max_count) : samples_(max_count) {
|
||||
RTC_DCHECK(max_count > 0);
|
||||
Reset();
|
||||
}
|
||||
~RollingAccumulator() {}
|
||||
|
||||
RollingAccumulator(const RollingAccumulator&) = delete;
|
||||
RollingAccumulator& operator=(const RollingAccumulator&) = delete;
|
||||
|
||||
size_t max_count() const { return samples_.size(); }
|
||||
|
||||
size_t count() const { return static_cast<size_t>(stats_.Size()); }
|
||||
|
||||
void Reset() {
|
||||
stats_ = webrtc::webrtc_impl::RunningStatistics<T>();
|
||||
next_index_ = 0U;
|
||||
max_ = T();
|
||||
max_stale_ = false;
|
||||
min_ = T();
|
||||
min_stale_ = false;
|
||||
}
|
||||
|
||||
void AddSample(T sample) {
|
||||
if (count() == max_count()) {
|
||||
// Remove oldest sample.
|
||||
T sample_to_remove = samples_[next_index_];
|
||||
stats_.RemoveSample(sample_to_remove);
|
||||
if (sample_to_remove >= max_) {
|
||||
max_stale_ = true;
|
||||
}
|
||||
if (sample_to_remove <= min_) {
|
||||
min_stale_ = true;
|
||||
}
|
||||
}
|
||||
// Add new sample.
|
||||
samples_[next_index_] = sample;
|
||||
if (count() == 0 || sample >= max_) {
|
||||
max_ = sample;
|
||||
max_stale_ = false;
|
||||
}
|
||||
if (count() == 0 || sample <= min_) {
|
||||
min_ = sample;
|
||||
min_stale_ = false;
|
||||
}
|
||||
stats_.AddSample(sample);
|
||||
// Update next_index_.
|
||||
next_index_ = (next_index_ + 1) % max_count();
|
||||
}
|
||||
|
||||
double ComputeMean() const { return stats_.GetMean().value_or(0); }
|
||||
|
||||
T ComputeMax() const {
|
||||
if (max_stale_) {
|
||||
RTC_DCHECK(count() > 0)
|
||||
<< "It shouldn't be possible for max_stale_ && count() == 0";
|
||||
max_ = samples_[next_index_];
|
||||
for (size_t i = 1u; i < count(); i++) {
|
||||
max_ = std::max(max_, samples_[(next_index_ + i) % max_count()]);
|
||||
}
|
||||
max_stale_ = false;
|
||||
}
|
||||
return max_;
|
||||
}
|
||||
|
||||
T ComputeMin() const {
|
||||
if (min_stale_) {
|
||||
RTC_DCHECK(count() > 0)
|
||||
<< "It shouldn't be possible for min_stale_ && count() == 0";
|
||||
min_ = samples_[next_index_];
|
||||
for (size_t i = 1u; i < count(); i++) {
|
||||
min_ = std::min(min_, samples_[(next_index_ + i) % max_count()]);
|
||||
}
|
||||
min_stale_ = false;
|
||||
}
|
||||
return min_;
|
||||
}
|
||||
|
||||
// O(n) time complexity.
|
||||
// Weights nth sample with weight (learning_rate)^n. Learning_rate should be
|
||||
// between (0.0, 1.0], otherwise the non-weighted mean is returned.
|
||||
double ComputeWeightedMean(double learning_rate) const {
|
||||
if (count() < 1 || learning_rate <= 0.0 || learning_rate >= 1.0) {
|
||||
return ComputeMean();
|
||||
}
|
||||
double weighted_mean = 0.0;
|
||||
double current_weight = 1.0;
|
||||
double weight_sum = 0.0;
|
||||
const size_t max_size = max_count();
|
||||
for (size_t i = 0; i < count(); ++i) {
|
||||
current_weight *= learning_rate;
|
||||
weight_sum += current_weight;
|
||||
// Add max_size to prevent underflow.
|
||||
size_t index = (next_index_ + max_size - i - 1) % max_size;
|
||||
weighted_mean += current_weight * samples_[index];
|
||||
}
|
||||
return weighted_mean / weight_sum;
|
||||
}
|
||||
|
||||
// Compute estimated variance. Estimation is more accurate
|
||||
// as the number of samples grows.
|
||||
double ComputeVariance() const { return stats_.GetVariance().value_or(0); }
|
||||
|
||||
private:
|
||||
webrtc::webrtc_impl::RunningStatistics<T> stats_;
|
||||
size_t next_index_;
|
||||
mutable T max_;
|
||||
mutable bool max_stale_;
|
||||
mutable T min_;
|
||||
mutable bool min_stale_;
|
||||
std::vector<T> samples_;
|
||||
};
|
||||
|
||||
} // namespace rtc
|
||||
|
||||
#endif // RTC_BASE_ROLLING_ACCUMULATOR_H_
|
||||
Loading…
Add table
Add a link
Reference in a new issue