Repo created

This commit is contained in:
Fr4nz D13trich 2025-11-22 14:04:28 +01:00
parent 81b91f4139
commit f8c34fa5ee
22732 changed files with 4815320 additions and 2 deletions

View file

@ -0,0 +1,5 @@
include_rules = [
"+third_party/ffmpeg",
"+third_party/openh264",
"+media/base",
]

View file

@ -0,0 +1,2 @@
sprang@webrtc.org
ssilkin@webrtc.org

View file

@ -0,0 +1,170 @@
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#include "modules/video_coding/codecs/h264/include/h264.h"
#include <memory>
#include <string>
#include "absl/container/inlined_vector.h"
#include "absl/types/optional.h"
#include "api/video_codecs/sdp_video_format.h"
#include "media/base/media_constants.h"
#include "rtc_base/trace_event.h"
#if defined(WEBRTC_USE_H264)
#include "modules/video_coding/codecs/h264/h264_decoder_impl.h"
#include "modules/video_coding/codecs/h264/h264_encoder_impl.h"
#endif
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
namespace webrtc {
namespace {
#if defined(WEBRTC_USE_H264)
bool g_rtc_use_h264 = true;
#endif
// If H.264 OpenH264/FFmpeg codec is supported.
bool IsH264CodecSupported() {
#if defined(WEBRTC_USE_H264)
return g_rtc_use_h264;
#else
return false;
#endif
}
constexpr ScalabilityMode kSupportedScalabilityModes[] = {
ScalabilityMode::kL1T1, ScalabilityMode::kL1T2, ScalabilityMode::kL1T3};
} // namespace
SdpVideoFormat CreateH264Format(H264Profile profile,
H264Level level,
const std::string& packetization_mode,
bool add_scalability_modes) {
const absl::optional<std::string> profile_string =
H264ProfileLevelIdToString(H264ProfileLevelId(profile, level));
RTC_CHECK(profile_string);
absl::InlinedVector<ScalabilityMode, kScalabilityModeCount> scalability_modes;
if (add_scalability_modes) {
for (const auto scalability_mode : kSupportedScalabilityModes) {
scalability_modes.push_back(scalability_mode);
}
}
return SdpVideoFormat(
cricket::kH264CodecName,
{{cricket::kH264FmtpProfileLevelId, *profile_string},
{cricket::kH264FmtpLevelAsymmetryAllowed, "1"},
{cricket::kH264FmtpPacketizationMode, packetization_mode}},
scalability_modes);
}
void DisableRtcUseH264() {
#if defined(WEBRTC_USE_H264)
g_rtc_use_h264 = false;
#endif
}
std::vector<SdpVideoFormat> SupportedH264Codecs(bool add_scalability_modes) {
TRACE_EVENT0("webrtc", __func__);
if (!IsH264CodecSupported())
return std::vector<SdpVideoFormat>();
// We only support encoding Constrained Baseline Profile (CBP), but the
// decoder supports more profiles. We can list all profiles here that are
// supported by the decoder and that are also supersets of CBP, i.e. the
// decoder for that profile is required to be able to decode CBP. This means
// we can encode and send CBP even though we negotiated a potentially
// higher profile. See the H264 spec for more information.
//
// We support both packetization modes 0 (mandatory) and 1 (optional,
// preferred).
return {CreateH264Format(H264Profile::kProfileBaseline, H264Level::kLevel3_1,
"1", add_scalability_modes),
CreateH264Format(H264Profile::kProfileBaseline, H264Level::kLevel3_1,
"0", add_scalability_modes),
CreateH264Format(H264Profile::kProfileConstrainedBaseline,
H264Level::kLevel3_1, "1", add_scalability_modes),
CreateH264Format(H264Profile::kProfileConstrainedBaseline,
H264Level::kLevel3_1, "0", add_scalability_modes),
CreateH264Format(H264Profile::kProfileMain, H264Level::kLevel3_1, "1",
add_scalability_modes),
CreateH264Format(H264Profile::kProfileMain, H264Level::kLevel3_1, "0",
add_scalability_modes)};
}
std::vector<SdpVideoFormat> SupportedH264DecoderCodecs() {
TRACE_EVENT0("webrtc", __func__);
if (!IsH264CodecSupported())
return std::vector<SdpVideoFormat>();
std::vector<SdpVideoFormat> supportedCodecs = SupportedH264Codecs();
// OpenH264 doesn't yet support High Predictive 4:4:4 encoding but it does
// support decoding.
supportedCodecs.push_back(CreateH264Format(
H264Profile::kProfilePredictiveHigh444, H264Level::kLevel3_1, "1"));
supportedCodecs.push_back(CreateH264Format(
H264Profile::kProfilePredictiveHigh444, H264Level::kLevel3_1, "0"));
return supportedCodecs;
}
std::unique_ptr<H264Encoder> H264Encoder::Create() {
return Create(cricket::CreateVideoCodec(cricket::kH264CodecName));
}
std::unique_ptr<H264Encoder> H264Encoder::Create(
const cricket::VideoCodec& codec) {
RTC_DCHECK(H264Encoder::IsSupported());
#if defined(WEBRTC_USE_H264)
RTC_CHECK(g_rtc_use_h264);
RTC_LOG(LS_INFO) << "Creating H264EncoderImpl.";
return std::make_unique<H264EncoderImpl>(codec);
#else
RTC_DCHECK_NOTREACHED();
return nullptr;
#endif
}
bool H264Encoder::IsSupported() {
return IsH264CodecSupported();
}
bool H264Encoder::SupportsScalabilityMode(ScalabilityMode scalability_mode) {
for (const auto& entry : kSupportedScalabilityModes) {
if (entry == scalability_mode) {
return true;
}
}
return false;
}
std::unique_ptr<H264Decoder> H264Decoder::Create() {
RTC_DCHECK(H264Decoder::IsSupported());
#if defined(WEBRTC_USE_H264)
RTC_CHECK(g_rtc_use_h264);
RTC_LOG(LS_INFO) << "Creating H264DecoderImpl.";
return std::make_unique<H264DecoderImpl>();
#else
RTC_DCHECK_NOTREACHED();
return nullptr;
#endif
}
bool H264Decoder::IsSupported() {
return IsH264CodecSupported();
}
} // namespace webrtc

View file

@ -0,0 +1,178 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Everything declared/defined in this header is only required when WebRTC is
// build with H264 support, please do not move anything out of the
// #ifdef unless needed and tested.
#ifdef WEBRTC_USE_H264
#include "modules/video_coding/codecs/h264/h264_color_space.h"
namespace webrtc {
ColorSpace ExtractH264ColorSpace(AVCodecContext* codec) {
ColorSpace::PrimaryID primaries = ColorSpace::PrimaryID::kUnspecified;
switch (codec->color_primaries) {
case AVCOL_PRI_BT709:
primaries = ColorSpace::PrimaryID::kBT709;
break;
case AVCOL_PRI_BT470M:
primaries = ColorSpace::PrimaryID::kBT470M;
break;
case AVCOL_PRI_BT470BG:
primaries = ColorSpace::PrimaryID::kBT470BG;
break;
case AVCOL_PRI_SMPTE170M:
primaries = ColorSpace::PrimaryID::kSMPTE170M;
break;
case AVCOL_PRI_SMPTE240M:
primaries = ColorSpace::PrimaryID::kSMPTE240M;
break;
case AVCOL_PRI_FILM:
primaries = ColorSpace::PrimaryID::kFILM;
break;
case AVCOL_PRI_BT2020:
primaries = ColorSpace::PrimaryID::kBT2020;
break;
case AVCOL_PRI_SMPTE428:
primaries = ColorSpace::PrimaryID::kSMPTEST428;
break;
case AVCOL_PRI_SMPTE431:
primaries = ColorSpace::PrimaryID::kSMPTEST431;
break;
case AVCOL_PRI_SMPTE432:
primaries = ColorSpace::PrimaryID::kSMPTEST432;
break;
case AVCOL_PRI_JEDEC_P22:
primaries = ColorSpace::PrimaryID::kJEDECP22;
break;
case AVCOL_PRI_RESERVED0:
case AVCOL_PRI_UNSPECIFIED:
case AVCOL_PRI_RESERVED:
default:
break;
}
ColorSpace::TransferID transfer = ColorSpace::TransferID::kUnspecified;
switch (codec->color_trc) {
case AVCOL_TRC_BT709:
transfer = ColorSpace::TransferID::kBT709;
break;
case AVCOL_TRC_GAMMA22:
transfer = ColorSpace::TransferID::kGAMMA22;
break;
case AVCOL_TRC_GAMMA28:
transfer = ColorSpace::TransferID::kGAMMA28;
break;
case AVCOL_TRC_SMPTE170M:
transfer = ColorSpace::TransferID::kSMPTE170M;
break;
case AVCOL_TRC_SMPTE240M:
transfer = ColorSpace::TransferID::kSMPTE240M;
break;
case AVCOL_TRC_LINEAR:
transfer = ColorSpace::TransferID::kLINEAR;
break;
case AVCOL_TRC_LOG:
transfer = ColorSpace::TransferID::kLOG;
break;
case AVCOL_TRC_LOG_SQRT:
transfer = ColorSpace::TransferID::kLOG_SQRT;
break;
case AVCOL_TRC_IEC61966_2_4:
transfer = ColorSpace::TransferID::kIEC61966_2_4;
break;
case AVCOL_TRC_BT1361_ECG:
transfer = ColorSpace::TransferID::kBT1361_ECG;
break;
case AVCOL_TRC_IEC61966_2_1:
transfer = ColorSpace::TransferID::kIEC61966_2_1;
break;
case AVCOL_TRC_BT2020_10:
transfer = ColorSpace::TransferID::kBT2020_10;
break;
case AVCOL_TRC_BT2020_12:
transfer = ColorSpace::TransferID::kBT2020_12;
break;
case AVCOL_TRC_SMPTE2084:
transfer = ColorSpace::TransferID::kSMPTEST2084;
break;
case AVCOL_TRC_SMPTE428:
transfer = ColorSpace::TransferID::kSMPTEST428;
break;
case AVCOL_TRC_ARIB_STD_B67:
transfer = ColorSpace::TransferID::kARIB_STD_B67;
break;
case AVCOL_TRC_RESERVED0:
case AVCOL_TRC_UNSPECIFIED:
case AVCOL_TRC_RESERVED:
default:
break;
}
ColorSpace::MatrixID matrix = ColorSpace::MatrixID::kUnspecified;
switch (codec->colorspace) {
case AVCOL_SPC_RGB:
matrix = ColorSpace::MatrixID::kRGB;
break;
case AVCOL_SPC_BT709:
matrix = ColorSpace::MatrixID::kBT709;
break;
case AVCOL_SPC_FCC:
matrix = ColorSpace::MatrixID::kFCC;
break;
case AVCOL_SPC_BT470BG:
matrix = ColorSpace::MatrixID::kBT470BG;
break;
case AVCOL_SPC_SMPTE170M:
matrix = ColorSpace::MatrixID::kSMPTE170M;
break;
case AVCOL_SPC_SMPTE240M:
matrix = ColorSpace::MatrixID::kSMPTE240M;
break;
case AVCOL_SPC_YCGCO:
matrix = ColorSpace::MatrixID::kYCOCG;
break;
case AVCOL_SPC_BT2020_NCL:
matrix = ColorSpace::MatrixID::kBT2020_NCL;
break;
case AVCOL_SPC_BT2020_CL:
matrix = ColorSpace::MatrixID::kBT2020_CL;
break;
case AVCOL_SPC_SMPTE2085:
matrix = ColorSpace::MatrixID::kSMPTE2085;
break;
case AVCOL_SPC_CHROMA_DERIVED_NCL:
case AVCOL_SPC_CHROMA_DERIVED_CL:
case AVCOL_SPC_ICTCP:
case AVCOL_SPC_UNSPECIFIED:
case AVCOL_SPC_RESERVED:
default:
break;
}
ColorSpace::RangeID range = ColorSpace::RangeID::kInvalid;
switch (codec->color_range) {
case AVCOL_RANGE_MPEG:
range = ColorSpace::RangeID::kLimited;
break;
case AVCOL_RANGE_JPEG:
range = ColorSpace::RangeID::kFull;
break;
case AVCOL_RANGE_UNSPECIFIED:
default:
break;
}
return ColorSpace(primaries, transfer, matrix, range);
}
} // namespace webrtc
#endif // WEBRTC_USE_H264

View file

@ -0,0 +1,38 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_VIDEO_CODING_CODECS_H264_H264_COLOR_SPACE_H_
#define MODULES_VIDEO_CODING_CODECS_H264_H264_COLOR_SPACE_H_
// Everything declared in this header is only required when WebRTC is
// build with H264 support, please do not move anything out of the
// #ifdef unless needed and tested.
#ifdef WEBRTC_USE_H264
#if defined(WEBRTC_WIN) && !defined(__clang__)
#error "See: bugs.webrtc.org/9213#c13."
#endif
#include "api/video/color_space.h"
extern "C" {
#include "libavcodec/avcodec.h"
} // extern "C"
namespace webrtc {
// Helper class for extracting color space information from H264 stream.
ColorSpace ExtractH264ColorSpace(AVCodecContext* codec);
} // namespace webrtc
#endif // WEBRTC_USE_H264
#endif // MODULES_VIDEO_CODING_CODECS_H264_H264_COLOR_SPACE_H_

View file

@ -0,0 +1,661 @@
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
// Everything declared/defined in this header is only required when WebRTC is
// build with H264 support, please do not move anything out of the
// #ifdef unless needed and tested.
#ifdef WEBRTC_USE_H264
#include "modules/video_coding/codecs/h264/h264_decoder_impl.h"
#include <algorithm>
#include <limits>
#include <memory>
extern "C" {
#include "libavcodec/avcodec.h"
#include "libavformat/avformat.h"
#include "libavutil/imgutils.h"
} // extern "C"
#include "api/video/color_space.h"
#include "api/video/i010_buffer.h"
#include "api/video/i420_buffer.h"
#include "common_video/include/video_frame_buffer.h"
#include "modules/video_coding/codecs/h264/h264_color_space.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
constexpr std::array<AVPixelFormat, 9> kPixelFormatsSupported = {
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUV420P10LE, AV_PIX_FMT_YUV422P10LE, AV_PIX_FMT_YUV444P10LE};
const size_t kYPlaneIndex = 0;
const size_t kUPlaneIndex = 1;
const size_t kVPlaneIndex = 2;
// Used by histograms. Values of entries should not be changed.
enum H264DecoderImplEvent {
kH264DecoderEventInit = 0,
kH264DecoderEventError = 1,
kH264DecoderEventMax = 16,
};
struct ScopedPtrAVFreePacket {
void operator()(AVPacket* packet) { av_packet_free(&packet); }
};
typedef std::unique_ptr<AVPacket, ScopedPtrAVFreePacket> ScopedAVPacket;
ScopedAVPacket MakeScopedAVPacket() {
ScopedAVPacket packet(av_packet_alloc());
return packet;
}
} // namespace
int H264DecoderImpl::AVGetBuffer2(AVCodecContext* context,
AVFrame* av_frame,
int flags) {
// Set in `Configure`.
H264DecoderImpl* decoder = static_cast<H264DecoderImpl*>(context->opaque);
// DCHECK values set in `Configure`.
RTC_DCHECK(decoder);
// Necessary capability to be allowed to provide our own buffers.
RTC_DCHECK(context->codec->capabilities | AV_CODEC_CAP_DR1);
auto pixelFormatSupported = std::find_if(
kPixelFormatsSupported.begin(), kPixelFormatsSupported.end(),
[context](AVPixelFormat format) { return context->pix_fmt == format; });
if (pixelFormatSupported == kPixelFormatsSupported.end()) {
RTC_LOG(LS_ERROR) << "Unsupported pixel format: " << context->pix_fmt;
decoder->ReportError();
return -1;
}
// `av_frame->width` and `av_frame->height` are set by FFmpeg. These are the
// actual image's dimensions and may be different from `context->width` and
// `context->coded_width` due to reordering.
int width = av_frame->width;
int height = av_frame->height;
// See `lowres`, if used the decoder scales the image by 1/2^(lowres). This
// has implications on which resolutions are valid, but we don't use it.
RTC_CHECK_EQ(context->lowres, 0);
// Adjust the `width` and `height` to values acceptable by the decoder.
// Without this, FFmpeg may overflow the buffer. If modified, `width` and/or
// `height` are larger than the actual image and the image has to be cropped
// (top-left corner) after decoding to avoid visible borders to the right and
// bottom of the actual image.
avcodec_align_dimensions(context, &width, &height);
RTC_CHECK_GE(width, 0);
RTC_CHECK_GE(height, 0);
int ret = av_image_check_size(static_cast<unsigned int>(width),
static_cast<unsigned int>(height), 0, nullptr);
if (ret < 0) {
RTC_LOG(LS_ERROR) << "Invalid picture size " << width << "x" << height;
decoder->ReportError();
return ret;
}
// The video frame is stored in `frame_buffer`. `av_frame` is FFmpeg's version
// of a video frame and will be set up to reference `frame_buffer`'s data.
// FFmpeg expects the initial allocation to be zero-initialized according to
// http://crbug.com/390941. Our pool is set up to zero-initialize new buffers.
// TODO(https://crbug.com/390941): Delete that feature from the video pool,
// instead add an explicit call to InitializeData here.
rtc::scoped_refptr<PlanarYuvBuffer> frame_buffer;
rtc::scoped_refptr<I444Buffer> i444_buffer;
rtc::scoped_refptr<I420Buffer> i420_buffer;
rtc::scoped_refptr<I422Buffer> i422_buffer;
rtc::scoped_refptr<I010Buffer> i010_buffer;
rtc::scoped_refptr<I210Buffer> i210_buffer;
rtc::scoped_refptr<I410Buffer> i410_buffer;
int bytes_per_pixel = 1;
switch (context->pix_fmt) {
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUVJ420P:
i420_buffer =
decoder->ffmpeg_buffer_pool_.CreateI420Buffer(width, height);
// Set `av_frame` members as required by FFmpeg.
av_frame->data[kYPlaneIndex] = i420_buffer->MutableDataY();
av_frame->linesize[kYPlaneIndex] = i420_buffer->StrideY();
av_frame->data[kUPlaneIndex] = i420_buffer->MutableDataU();
av_frame->linesize[kUPlaneIndex] = i420_buffer->StrideU();
av_frame->data[kVPlaneIndex] = i420_buffer->MutableDataV();
av_frame->linesize[kVPlaneIndex] = i420_buffer->StrideV();
RTC_DCHECK_EQ(av_frame->extended_data, av_frame->data);
frame_buffer = i420_buffer;
break;
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_YUVJ444P:
i444_buffer =
decoder->ffmpeg_buffer_pool_.CreateI444Buffer(width, height);
// Set `av_frame` members as required by FFmpeg.
av_frame->data[kYPlaneIndex] = i444_buffer->MutableDataY();
av_frame->linesize[kYPlaneIndex] = i444_buffer->StrideY();
av_frame->data[kUPlaneIndex] = i444_buffer->MutableDataU();
av_frame->linesize[kUPlaneIndex] = i444_buffer->StrideU();
av_frame->data[kVPlaneIndex] = i444_buffer->MutableDataV();
av_frame->linesize[kVPlaneIndex] = i444_buffer->StrideV();
frame_buffer = i444_buffer;
break;
case AV_PIX_FMT_YUV422P:
case AV_PIX_FMT_YUVJ422P:
i422_buffer =
decoder->ffmpeg_buffer_pool_.CreateI422Buffer(width, height);
// Set `av_frame` members as required by FFmpeg.
av_frame->data[kYPlaneIndex] = i422_buffer->MutableDataY();
av_frame->linesize[kYPlaneIndex] = i422_buffer->StrideY();
av_frame->data[kUPlaneIndex] = i422_buffer->MutableDataU();
av_frame->linesize[kUPlaneIndex] = i422_buffer->StrideU();
av_frame->data[kVPlaneIndex] = i422_buffer->MutableDataV();
av_frame->linesize[kVPlaneIndex] = i422_buffer->StrideV();
frame_buffer = i422_buffer;
break;
case AV_PIX_FMT_YUV420P10LE:
i010_buffer =
decoder->ffmpeg_buffer_pool_.CreateI010Buffer(width, height);
// Set `av_frame` members as required by FFmpeg.
av_frame->data[kYPlaneIndex] =
reinterpret_cast<uint8_t*>(i010_buffer->MutableDataY());
av_frame->linesize[kYPlaneIndex] = i010_buffer->StrideY() * 2;
av_frame->data[kUPlaneIndex] =
reinterpret_cast<uint8_t*>(i010_buffer->MutableDataU());
av_frame->linesize[kUPlaneIndex] = i010_buffer->StrideU() * 2;
av_frame->data[kVPlaneIndex] =
reinterpret_cast<uint8_t*>(i010_buffer->MutableDataV());
av_frame->linesize[kVPlaneIndex] = i010_buffer->StrideV() * 2;
frame_buffer = i010_buffer;
bytes_per_pixel = 2;
break;
case AV_PIX_FMT_YUV422P10LE:
i210_buffer =
decoder->ffmpeg_buffer_pool_.CreateI210Buffer(width, height);
// Set `av_frame` members as required by FFmpeg.
av_frame->data[kYPlaneIndex] =
reinterpret_cast<uint8_t*>(i210_buffer->MutableDataY());
av_frame->linesize[kYPlaneIndex] = i210_buffer->StrideY() * 2;
av_frame->data[kUPlaneIndex] =
reinterpret_cast<uint8_t*>(i210_buffer->MutableDataU());
av_frame->linesize[kUPlaneIndex] = i210_buffer->StrideU() * 2;
av_frame->data[kVPlaneIndex] =
reinterpret_cast<uint8_t*>(i210_buffer->MutableDataV());
av_frame->linesize[kVPlaneIndex] = i210_buffer->StrideV() * 2;
frame_buffer = i210_buffer;
bytes_per_pixel = 2;
break;
case AV_PIX_FMT_YUV444P10LE:
i410_buffer =
decoder->ffmpeg_buffer_pool_.CreateI410Buffer(width, height);
// Set `av_frame` members as required by FFmpeg.
av_frame->data[kYPlaneIndex] =
reinterpret_cast<uint8_t*>(i410_buffer->MutableDataY());
av_frame->linesize[kYPlaneIndex] = i410_buffer->StrideY() * 2;
av_frame->data[kUPlaneIndex] =
reinterpret_cast<uint8_t*>(i410_buffer->MutableDataU());
av_frame->linesize[kUPlaneIndex] = i410_buffer->StrideU() * 2;
av_frame->data[kVPlaneIndex] =
reinterpret_cast<uint8_t*>(i410_buffer->MutableDataV());
av_frame->linesize[kVPlaneIndex] = i410_buffer->StrideV() * 2;
frame_buffer = i410_buffer;
bytes_per_pixel = 2;
break;
default:
RTC_LOG(LS_ERROR) << "Unsupported buffer type " << context->pix_fmt
<< ". Check supported supported pixel formats!";
decoder->ReportError();
return -1;
}
int y_size = width * height * bytes_per_pixel;
int uv_size = frame_buffer->ChromaWidth() * frame_buffer->ChromaHeight() *
bytes_per_pixel;
// DCHECK that we have a continuous buffer as is required.
RTC_DCHECK_EQ(av_frame->data[kUPlaneIndex],
av_frame->data[kYPlaneIndex] + y_size);
RTC_DCHECK_EQ(av_frame->data[kVPlaneIndex],
av_frame->data[kUPlaneIndex] + uv_size);
int total_size = y_size + 2 * uv_size;
av_frame->format = context->pix_fmt;
av_frame->reordered_opaque = context->reordered_opaque;
// Create a VideoFrame object, to keep a reference to the buffer.
// TODO(nisse): The VideoFrame's timestamp and rotation info is not used.
// Refactor to do not use a VideoFrame object at all.
av_frame->buf[0] = av_buffer_create(
av_frame->data[kYPlaneIndex], total_size, AVFreeBuffer2,
static_cast<void*>(
std::make_unique<VideoFrame>(VideoFrame::Builder()
.set_video_frame_buffer(frame_buffer)
.set_rotation(kVideoRotation_0)
.set_timestamp_us(0)
.build())
.release()),
0);
RTC_CHECK(av_frame->buf[0]);
return 0;
}
void H264DecoderImpl::AVFreeBuffer2(void* opaque, uint8_t* data) {
// The buffer pool recycles the buffer used by `video_frame` when there are no
// more references to it. `video_frame` is a thin buffer holder and is not
// recycled.
VideoFrame* video_frame = static_cast<VideoFrame*>(opaque);
delete video_frame;
}
H264DecoderImpl::H264DecoderImpl()
: ffmpeg_buffer_pool_(true),
decoded_image_callback_(nullptr),
has_reported_init_(false),
has_reported_error_(false) {}
H264DecoderImpl::~H264DecoderImpl() {
Release();
}
bool H264DecoderImpl::Configure(const Settings& settings) {
ReportInit();
if (settings.codec_type() != kVideoCodecH264) {
ReportError();
return false;
}
// Release necessary in case of re-initializing.
int32_t ret = Release();
if (ret != WEBRTC_VIDEO_CODEC_OK) {
ReportError();
return false;
}
RTC_DCHECK(!av_context_);
// Initialize AVCodecContext.
av_context_.reset(avcodec_alloc_context3(nullptr));
av_context_->codec_type = AVMEDIA_TYPE_VIDEO;
av_context_->codec_id = AV_CODEC_ID_H264;
const RenderResolution& resolution = settings.max_render_resolution();
if (resolution.Valid()) {
av_context_->coded_width = resolution.Width();
av_context_->coded_height = resolution.Height();
}
av_context_->extradata = nullptr;
av_context_->extradata_size = 0;
// If this is ever increased, look at `av_context_->thread_safe_callbacks` and
// make it possible to disable the thread checker in the frame buffer pool.
av_context_->thread_count = 1;
av_context_->thread_type = FF_THREAD_SLICE;
// Function used by FFmpeg to get buffers to store decoded frames in.
av_context_->get_buffer2 = AVGetBuffer2;
// `get_buffer2` is called with the context, there `opaque` can be used to get
// a pointer `this`.
av_context_->opaque = this;
const AVCodec* codec = avcodec_find_decoder(av_context_->codec_id);
if (!codec) {
// This is an indication that FFmpeg has not been initialized or it has not
// been compiled/initialized with the correct set of codecs.
RTC_LOG(LS_ERROR) << "FFmpeg H.264 decoder not found.";
Release();
ReportError();
return false;
}
int res = avcodec_open2(av_context_.get(), codec, nullptr);
if (res < 0) {
RTC_LOG(LS_ERROR) << "avcodec_open2 error: " << res;
Release();
ReportError();
return false;
}
av_frame_.reset(av_frame_alloc());
if (absl::optional<int> buffer_pool_size = settings.buffer_pool_size()) {
if (!ffmpeg_buffer_pool_.Resize(*buffer_pool_size)) {
return false;
}
}
return true;
}
int32_t H264DecoderImpl::Release() {
av_context_.reset();
av_frame_.reset();
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t H264DecoderImpl::RegisterDecodeCompleteCallback(
DecodedImageCallback* callback) {
decoded_image_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t H264DecoderImpl::Decode(const EncodedImage& input_image,
bool /*missing_frames*/,
int64_t /*render_time_ms*/) {
if (!IsInitialized()) {
ReportError();
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (!decoded_image_callback_) {
RTC_LOG(LS_WARNING)
<< "Configure() has been called, but a callback function "
"has not been set with RegisterDecodeCompleteCallback()";
ReportError();
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (!input_image.data() || !input_image.size()) {
ReportError();
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
ScopedAVPacket packet = MakeScopedAVPacket();
if (!packet) {
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
// packet.data has a non-const type, but isn't modified by
// avcodec_send_packet.
packet->data = const_cast<uint8_t*>(input_image.data());
if (input_image.size() >
static_cast<size_t>(std::numeric_limits<int>::max())) {
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
packet->size = static_cast<int>(input_image.size());
int64_t frame_timestamp_us = input_image.ntp_time_ms_ * 1000; // ms -> μs
av_context_->reordered_opaque = frame_timestamp_us;
int result = avcodec_send_packet(av_context_.get(), packet.get());
if (result < 0) {
RTC_LOG(LS_ERROR) << "avcodec_send_packet error: " << result;
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
result = avcodec_receive_frame(av_context_.get(), av_frame_.get());
if (result < 0) {
RTC_LOG(LS_ERROR) << "avcodec_receive_frame error: " << result;
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
// We don't expect reordering. Decoded frame timestamp should match
// the input one.
RTC_DCHECK_EQ(av_frame_->reordered_opaque, frame_timestamp_us);
// TODO(sakal): Maybe it is possible to get QP directly from FFmpeg.
h264_bitstream_parser_.ParseBitstream(input_image);
absl::optional<int> qp = h264_bitstream_parser_.GetLastSliceQp();
// Obtain the `video_frame` containing the decoded image.
VideoFrame* input_frame =
static_cast<VideoFrame*>(av_buffer_get_opaque(av_frame_->buf[0]));
RTC_DCHECK(input_frame);
rtc::scoped_refptr<VideoFrameBuffer> frame_buffer =
input_frame->video_frame_buffer();
// Instantiate Planar YUV buffer according to video frame buffer type
const webrtc::PlanarYuvBuffer* planar_yuv_buffer = nullptr;
const webrtc::PlanarYuv8Buffer* planar_yuv8_buffer = nullptr;
const webrtc::PlanarYuv16BBuffer* planar_yuv16_buffer = nullptr;
VideoFrameBuffer::Type video_frame_buffer_type = frame_buffer->type();
switch (video_frame_buffer_type) {
case VideoFrameBuffer::Type::kI420:
planar_yuv_buffer = frame_buffer->GetI420();
planar_yuv8_buffer =
reinterpret_cast<const webrtc::PlanarYuv8Buffer*>(planar_yuv_buffer);
break;
case VideoFrameBuffer::Type::kI444:
planar_yuv_buffer = frame_buffer->GetI444();
planar_yuv8_buffer =
reinterpret_cast<const webrtc::PlanarYuv8Buffer*>(planar_yuv_buffer);
break;
case VideoFrameBuffer::Type::kI422:
planar_yuv_buffer = frame_buffer->GetI422();
planar_yuv8_buffer =
reinterpret_cast<const webrtc::PlanarYuv8Buffer*>(planar_yuv_buffer);
break;
case VideoFrameBuffer::Type::kI010:
planar_yuv_buffer = frame_buffer->GetI010();
planar_yuv16_buffer = reinterpret_cast<const webrtc::PlanarYuv16BBuffer*>(
planar_yuv_buffer);
break;
case VideoFrameBuffer::Type::kI210:
planar_yuv_buffer = frame_buffer->GetI210();
planar_yuv16_buffer = reinterpret_cast<const webrtc::PlanarYuv16BBuffer*>(
planar_yuv_buffer);
break;
case VideoFrameBuffer::Type::kI410:
planar_yuv_buffer = frame_buffer->GetI410();
planar_yuv16_buffer = reinterpret_cast<const webrtc::PlanarYuv16BBuffer*>(
planar_yuv_buffer);
break;
default:
// If this code is changed to allow other video frame buffer type,
// make sure that the code below which wraps I420/I422/I444 buffer and
// code which converts to NV12 is changed
// to work with new video frame buffer type
RTC_LOG(LS_ERROR) << "frame_buffer type: "
<< static_cast<int32_t>(video_frame_buffer_type)
<< " is not supported!";
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
// When needed, FFmpeg applies cropping by moving plane pointers and adjusting
// frame width/height. Ensure that cropped buffers lie within the allocated
// memory.
RTC_DCHECK_LE(av_frame_->width, planar_yuv_buffer->width());
RTC_DCHECK_LE(av_frame_->height, planar_yuv_buffer->height());
switch (video_frame_buffer_type) {
case VideoFrameBuffer::Type::kI420:
case VideoFrameBuffer::Type::kI444:
case VideoFrameBuffer::Type::kI422: {
RTC_DCHECK_GE(av_frame_->data[kYPlaneIndex], planar_yuv8_buffer->DataY());
RTC_DCHECK_LE(
av_frame_->data[kYPlaneIndex] +
av_frame_->linesize[kYPlaneIndex] * av_frame_->height,
planar_yuv8_buffer->DataY() +
planar_yuv8_buffer->StrideY() * planar_yuv8_buffer->height());
RTC_DCHECK_GE(av_frame_->data[kUPlaneIndex], planar_yuv8_buffer->DataU());
RTC_DCHECK_LE(
av_frame_->data[kUPlaneIndex] +
av_frame_->linesize[kUPlaneIndex] *
planar_yuv8_buffer->ChromaHeight(),
planar_yuv8_buffer->DataU() + planar_yuv8_buffer->StrideU() *
planar_yuv8_buffer->ChromaHeight());
RTC_DCHECK_GE(av_frame_->data[kVPlaneIndex], planar_yuv8_buffer->DataV());
RTC_DCHECK_LE(
av_frame_->data[kVPlaneIndex] +
av_frame_->linesize[kVPlaneIndex] *
planar_yuv8_buffer->ChromaHeight(),
planar_yuv8_buffer->DataV() + planar_yuv8_buffer->StrideV() *
planar_yuv8_buffer->ChromaHeight());
break;
}
case VideoFrameBuffer::Type::kI010:
case VideoFrameBuffer::Type::kI210:
case VideoFrameBuffer::Type::kI410: {
RTC_DCHECK_GE(
av_frame_->data[kYPlaneIndex],
reinterpret_cast<const uint8_t*>(planar_yuv16_buffer->DataY()));
RTC_DCHECK_LE(
av_frame_->data[kYPlaneIndex] +
av_frame_->linesize[kYPlaneIndex] * av_frame_->height,
reinterpret_cast<const uint8_t*>(planar_yuv16_buffer->DataY()) +
planar_yuv16_buffer->StrideY() * 2 *
planar_yuv16_buffer->height());
RTC_DCHECK_GE(
av_frame_->data[kUPlaneIndex],
reinterpret_cast<const uint8_t*>(planar_yuv16_buffer->DataU()));
RTC_DCHECK_LE(
av_frame_->data[kUPlaneIndex] +
av_frame_->linesize[kUPlaneIndex] *
planar_yuv16_buffer->ChromaHeight(),
reinterpret_cast<const uint8_t*>(planar_yuv16_buffer->DataU()) +
planar_yuv16_buffer->StrideU() * 2 *
planar_yuv16_buffer->ChromaHeight());
RTC_DCHECK_GE(
av_frame_->data[kVPlaneIndex],
reinterpret_cast<const uint8_t*>(planar_yuv16_buffer->DataV()));
RTC_DCHECK_LE(
av_frame_->data[kVPlaneIndex] +
av_frame_->linesize[kVPlaneIndex] *
planar_yuv16_buffer->ChromaHeight(),
reinterpret_cast<const uint8_t*>(planar_yuv16_buffer->DataV()) +
planar_yuv16_buffer->StrideV() * 2 *
planar_yuv16_buffer->ChromaHeight());
break;
}
default:
RTC_LOG(LS_ERROR) << "frame_buffer type: "
<< static_cast<int32_t>(video_frame_buffer_type)
<< " is not supported!";
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
rtc::scoped_refptr<webrtc::VideoFrameBuffer> cropped_buffer;
switch (video_frame_buffer_type) {
case VideoFrameBuffer::Type::kI420:
cropped_buffer = WrapI420Buffer(
av_frame_->width, av_frame_->height, av_frame_->data[kYPlaneIndex],
av_frame_->linesize[kYPlaneIndex], av_frame_->data[kUPlaneIndex],
av_frame_->linesize[kUPlaneIndex], av_frame_->data[kVPlaneIndex],
av_frame_->linesize[kVPlaneIndex],
// To keep reference alive.
[frame_buffer] {});
break;
case VideoFrameBuffer::Type::kI444:
cropped_buffer = WrapI444Buffer(
av_frame_->width, av_frame_->height, av_frame_->data[kYPlaneIndex],
av_frame_->linesize[kYPlaneIndex], av_frame_->data[kUPlaneIndex],
av_frame_->linesize[kUPlaneIndex], av_frame_->data[kVPlaneIndex],
av_frame_->linesize[kVPlaneIndex],
// To keep reference alive.
[frame_buffer] {});
break;
case VideoFrameBuffer::Type::kI422:
cropped_buffer = WrapI422Buffer(
av_frame_->width, av_frame_->height, av_frame_->data[kYPlaneIndex],
av_frame_->linesize[kYPlaneIndex], av_frame_->data[kUPlaneIndex],
av_frame_->linesize[kUPlaneIndex], av_frame_->data[kVPlaneIndex],
av_frame_->linesize[kVPlaneIndex],
// To keep reference alive.
[frame_buffer] {});
break;
case VideoFrameBuffer::Type::kI010:
cropped_buffer = WrapI010Buffer(
av_frame_->width, av_frame_->height,
reinterpret_cast<const uint16_t*>(av_frame_->data[kYPlaneIndex]),
av_frame_->linesize[kYPlaneIndex] / 2,
reinterpret_cast<const uint16_t*>(av_frame_->data[kUPlaneIndex]),
av_frame_->linesize[kUPlaneIndex] / 2,
reinterpret_cast<const uint16_t*>(av_frame_->data[kVPlaneIndex]),
av_frame_->linesize[kVPlaneIndex] / 2,
// To keep reference alive.
[frame_buffer] {});
break;
case VideoFrameBuffer::Type::kI210:
cropped_buffer = WrapI210Buffer(
av_frame_->width, av_frame_->height,
reinterpret_cast<const uint16_t*>(av_frame_->data[kYPlaneIndex]),
av_frame_->linesize[kYPlaneIndex] / 2,
reinterpret_cast<const uint16_t*>(av_frame_->data[kUPlaneIndex]),
av_frame_->linesize[kUPlaneIndex] / 2,
reinterpret_cast<const uint16_t*>(av_frame_->data[kVPlaneIndex]),
av_frame_->linesize[kVPlaneIndex] / 2,
// To keep reference alive.
[frame_buffer] {});
break;
case VideoFrameBuffer::Type::kI410:
cropped_buffer = WrapI410Buffer(
av_frame_->width, av_frame_->height,
reinterpret_cast<const uint16_t*>(av_frame_->data[kYPlaneIndex]),
av_frame_->linesize[kYPlaneIndex] / 2,
reinterpret_cast<const uint16_t*>(av_frame_->data[kUPlaneIndex]),
av_frame_->linesize[kUPlaneIndex] / 2,
reinterpret_cast<const uint16_t*>(av_frame_->data[kVPlaneIndex]),
av_frame_->linesize[kVPlaneIndex] / 2,
// To keep reference alive.
[frame_buffer] {});
break;
default:
RTC_LOG(LS_ERROR) << "frame_buffer type: "
<< static_cast<int32_t>(video_frame_buffer_type)
<< " is not supported!";
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
// Pass on color space from input frame if explicitly specified.
const ColorSpace& color_space =
input_image.ColorSpace() ? *input_image.ColorSpace()
: ExtractH264ColorSpace(av_context_.get());
VideoFrame decoded_frame = VideoFrame::Builder()
.set_video_frame_buffer(cropped_buffer)
.set_timestamp_rtp(input_image.RtpTimestamp())
.set_color_space(color_space)
.build();
// Return decoded frame.
// TODO(nisse): Timestamp and rotation are all zero here. Change decoder
// interface to pass a VideoFrameBuffer instead of a VideoFrame?
decoded_image_callback_->Decoded(decoded_frame, absl::nullopt, qp);
// Stop referencing it, possibly freeing `input_frame`.
av_frame_unref(av_frame_.get());
input_frame = nullptr;
return WEBRTC_VIDEO_CODEC_OK;
}
const char* H264DecoderImpl::ImplementationName() const {
return "FFmpeg";
}
bool H264DecoderImpl::IsInitialized() const {
return av_context_ != nullptr;
}
void H264DecoderImpl::ReportInit() {
if (has_reported_init_)
return;
RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264DecoderImpl.Event",
kH264DecoderEventInit, kH264DecoderEventMax);
has_reported_init_ = true;
}
void H264DecoderImpl::ReportError() {
if (has_reported_error_)
return;
RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264DecoderImpl.Event",
kH264DecoderEventError, kH264DecoderEventMax);
has_reported_error_ = true;
}
} // namespace webrtc
#endif // WEBRTC_USE_H264

View file

@ -0,0 +1,109 @@
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#ifndef MODULES_VIDEO_CODING_CODECS_H264_H264_DECODER_IMPL_H_
#define MODULES_VIDEO_CODING_CODECS_H264_H264_DECODER_IMPL_H_
// Everything declared in this header is only required when WebRTC is
// build with H264 support, please do not move anything out of the
// #ifdef unless needed and tested.
#ifdef WEBRTC_USE_H264
#if defined(WEBRTC_WIN) && !defined(__clang__)
#error "See: bugs.webrtc.org/9213#c13."
#endif
#include <memory>
#include "modules/video_coding/codecs/h264/include/h264.h"
// CAVEAT: According to ffmpeg docs for avcodec_send_packet, ffmpeg requires a
// few extra padding bytes after the end of input. And in addition, docs for
// AV_INPUT_BUFFER_PADDING_SIZE says "If the first 23 bits of the additional
// bytes are not 0, then damaged MPEG bitstreams could cause overread and
// segfault."
//
// WebRTC doesn't ensure any such padding, and REQUIRES ffmpeg to be compiled
// with CONFIG_SAFE_BITSTREAM_READER, which is intended to eliminate
// out-of-bounds reads. ffmpeg docs doesn't say explicitly what effects this
// flag has on the h.264 decoder or avcodec_send_packet, though, so this is in
// some way depending on undocumented behavior. If any problems turn up, we may
// have to add an extra copy operation, to enforce padding before buffers are
// passed to ffmpeg.
extern "C" {
#include "libavcodec/avcodec.h"
} // extern "C"
#include "common_video/h264/h264_bitstream_parser.h"
#include "common_video/include/video_frame_buffer_pool.h"
namespace webrtc {
struct AVCodecContextDeleter {
void operator()(AVCodecContext* ptr) const { avcodec_free_context(&ptr); }
};
struct AVFrameDeleter {
void operator()(AVFrame* ptr) const { av_frame_free(&ptr); }
};
class H264DecoderImpl : public H264Decoder {
public:
H264DecoderImpl();
~H264DecoderImpl() override;
bool Configure(const Settings& settings) override;
int32_t Release() override;
int32_t RegisterDecodeCompleteCallback(
DecodedImageCallback* callback) override;
// `missing_frames`, `fragmentation` and `render_time_ms` are ignored.
int32_t Decode(const EncodedImage& input_image,
bool /*missing_frames*/,
int64_t render_time_ms = -1) override;
const char* ImplementationName() const override;
private:
// Called by FFmpeg when it needs a frame buffer to store decoded frames in.
// The `VideoFrame` returned by FFmpeg at `Decode` originate from here. Their
// buffers are reference counted and freed by FFmpeg using `AVFreeBuffer2`.
static int AVGetBuffer2(AVCodecContext* context,
AVFrame* av_frame,
int flags);
// Called by FFmpeg when it is done with a video frame, see `AVGetBuffer2`.
static void AVFreeBuffer2(void* opaque, uint8_t* data);
bool IsInitialized() const;
// Reports statistics with histograms.
void ReportInit();
void ReportError();
// Used by ffmpeg via `AVGetBuffer2()` to allocate I420 images.
VideoFrameBufferPool ffmpeg_buffer_pool_;
std::unique_ptr<AVCodecContext, AVCodecContextDeleter> av_context_;
std::unique_ptr<AVFrame, AVFrameDeleter> av_frame_;
DecodedImageCallback* decoded_image_callback_;
bool has_reported_init_;
bool has_reported_error_;
webrtc::H264BitstreamParser h264_bitstream_parser_;
};
} // namespace webrtc
#endif // WEBRTC_USE_H264
#endif // MODULES_VIDEO_CODING_CODECS_H264_H264_DECODER_IMPL_H_

View file

@ -0,0 +1,736 @@
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
// Everything declared/defined in this header is only required when WebRTC is
// build with H264 support, please do not move anything out of the
// #ifdef unless needed and tested.
#ifdef WEBRTC_USE_H264
#include "modules/video_coding/codecs/h264/h264_encoder_impl.h"
#include <algorithm>
#include <limits>
#include <string>
#include "absl/strings/match.h"
#include "absl/types/optional.h"
#include "api/video/video_codec_constants.h"
#include "api/video_codecs/scalability_mode.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/video_coding/svc/create_scalability_structure.h"
#include "modules/video_coding/utility/simulcast_rate_allocator.h"
#include "modules/video_coding/utility/simulcast_utility.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/time_utils.h"
#include "system_wrappers/include/metrics.h"
#include "third_party/libyuv/include/libyuv/convert.h"
#include "third_party/libyuv/include/libyuv/scale.h"
#include "third_party/openh264/src/codec/api/svc/codec_api.h"
#include "third_party/openh264/src/codec/api/svc/codec_app_def.h"
#include "third_party/openh264/src/codec/api/svc/codec_def.h"
#include "third_party/openh264/src/codec/api/svc/codec_ver.h"
namespace webrtc {
namespace {
const bool kOpenH264EncoderDetailedLogging = false;
// QP scaling thresholds.
static const int kLowH264QpThreshold = 24;
static const int kHighH264QpThreshold = 37;
// Used by histograms. Values of entries should not be changed.
enum H264EncoderImplEvent {
kH264EncoderEventInit = 0,
kH264EncoderEventError = 1,
kH264EncoderEventMax = 16,
};
int NumberOfThreads(absl::optional<int> encoder_thread_limit,
int width,
int height,
int number_of_cores) {
// TODO(hbos): In Chromium, multiple threads do not work with sandbox on Mac,
// see crbug.com/583348. Until further investigated, only use one thread.
// While this limitation is gone, this changes the bitstream format (see
// bugs.webrtc.org/14368) so still guarded by field trial to allow for
// experimentation using th experimental
// WebRTC-VideoEncoderSettings/encoder_thread_limit trial.
if (encoder_thread_limit.has_value()) {
int limit = encoder_thread_limit.value();
RTC_DCHECK_GE(limit, 1);
if (width * height >= 1920 * 1080 && number_of_cores > 8) {
return std::min(limit, 8); // 8 threads for 1080p on high perf machines.
} else if (width * height > 1280 * 960 && number_of_cores >= 6) {
return std::min(limit, 3); // 3 threads for 1080p.
} else if (width * height > 640 * 480 && number_of_cores >= 3) {
return std::min(limit, 2); // 2 threads for qHD/HD.
} else {
return 1; // 1 thread for VGA or less.
}
}
// TODO(sprang): Also check sSliceArgument.uiSliceNum on GetEncoderParams(),
// before enabling multithreading here.
return 1;
}
VideoFrameType ConvertToVideoFrameType(EVideoFrameType type) {
switch (type) {
case videoFrameTypeIDR:
return VideoFrameType::kVideoFrameKey;
case videoFrameTypeSkip:
case videoFrameTypeI:
case videoFrameTypeP:
case videoFrameTypeIPMixed:
return VideoFrameType::kVideoFrameDelta;
case videoFrameTypeInvalid:
break;
}
RTC_DCHECK_NOTREACHED() << "Unexpected/invalid frame type: " << type;
return VideoFrameType::kEmptyFrame;
}
absl::optional<ScalabilityMode> ScalabilityModeFromTemporalLayers(
int num_temporal_layers) {
switch (num_temporal_layers) {
case 0:
break;
case 1:
return ScalabilityMode::kL1T1;
case 2:
return ScalabilityMode::kL1T2;
case 3:
return ScalabilityMode::kL1T3;
default:
RTC_DCHECK_NOTREACHED();
}
return absl::nullopt;
}
} // namespace
// Helper method used by H264EncoderImpl::Encode.
// Copies the encoded bytes from `info` to `encoded_image`. The
// `encoded_image->_buffer` may be deleted and reallocated if a bigger buffer is
// required.
//
// After OpenH264 encoding, the encoded bytes are stored in `info` spread out
// over a number of layers and "NAL units". Each NAL unit is a fragment starting
// with the four-byte start code {0,0,0,1}. All of this data (including the
// start codes) is copied to the `encoded_image->_buffer`.
static void RtpFragmentize(EncodedImage* encoded_image, SFrameBSInfo* info) {
// Calculate minimum buffer size required to hold encoded data.
size_t required_capacity = 0;
size_t fragments_count = 0;
for (int layer = 0; layer < info->iLayerNum; ++layer) {
const SLayerBSInfo& layerInfo = info->sLayerInfo[layer];
for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++fragments_count) {
RTC_CHECK_GE(layerInfo.pNalLengthInByte[nal], 0);
// Ensure `required_capacity` will not overflow.
RTC_CHECK_LE(layerInfo.pNalLengthInByte[nal],
std::numeric_limits<size_t>::max() - required_capacity);
required_capacity += layerInfo.pNalLengthInByte[nal];
}
}
auto buffer = EncodedImageBuffer::Create(required_capacity);
encoded_image->SetEncodedData(buffer);
// Iterate layers and NAL units, note each NAL unit as a fragment and copy
// the data to `encoded_image->_buffer`.
const uint8_t start_code[4] = {0, 0, 0, 1};
size_t frag = 0;
encoded_image->set_size(0);
for (int layer = 0; layer < info->iLayerNum; ++layer) {
const SLayerBSInfo& layerInfo = info->sLayerInfo[layer];
// Iterate NAL units making up this layer, noting fragments.
size_t layer_len = 0;
for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++frag) {
// Because the sum of all layer lengths, `required_capacity`, fits in a
// `size_t`, we know that any indices in-between will not overflow.
RTC_DCHECK_GE(layerInfo.pNalLengthInByte[nal], 4);
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 0], start_code[0]);
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 1], start_code[1]);
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 2], start_code[2]);
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 3], start_code[3]);
layer_len += layerInfo.pNalLengthInByte[nal];
}
// Copy the entire layer's data (including start codes).
memcpy(buffer->data() + encoded_image->size(), layerInfo.pBsBuf, layer_len);
encoded_image->set_size(encoded_image->size() + layer_len);
}
}
H264EncoderImpl::H264EncoderImpl(const cricket::VideoCodec& codec)
: packetization_mode_(H264PacketizationMode::SingleNalUnit),
max_payload_size_(0),
number_of_cores_(0),
encoded_image_callback_(nullptr),
has_reported_init_(false),
has_reported_error_(false) {
RTC_CHECK(absl::EqualsIgnoreCase(codec.name, cricket::kH264CodecName));
std::string packetization_mode_string;
if (codec.GetParam(cricket::kH264FmtpPacketizationMode,
&packetization_mode_string) &&
packetization_mode_string == "1") {
packetization_mode_ = H264PacketizationMode::NonInterleaved;
}
downscaled_buffers_.reserve(kMaxSimulcastStreams - 1);
encoded_images_.reserve(kMaxSimulcastStreams);
encoders_.reserve(kMaxSimulcastStreams);
configurations_.reserve(kMaxSimulcastStreams);
tl0sync_limit_.reserve(kMaxSimulcastStreams);
svc_controllers_.reserve(kMaxSimulcastStreams);
}
H264EncoderImpl::~H264EncoderImpl() {
Release();
}
int32_t H264EncoderImpl::InitEncode(const VideoCodec* inst,
const VideoEncoder::Settings& settings) {
ReportInit();
if (!inst || inst->codecType != kVideoCodecH264) {
ReportError();
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->maxFramerate == 0) {
ReportError();
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->width < 1 || inst->height < 1) {
ReportError();
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
int32_t release_ret = Release();
if (release_ret != WEBRTC_VIDEO_CODEC_OK) {
ReportError();
return release_ret;
}
int number_of_streams = SimulcastUtility::NumberOfSimulcastStreams(*inst);
bool doing_simulcast = (number_of_streams > 1);
if (doing_simulcast &&
!SimulcastUtility::ValidSimulcastParameters(*inst, number_of_streams)) {
return WEBRTC_VIDEO_CODEC_ERR_SIMULCAST_PARAMETERS_NOT_SUPPORTED;
}
downscaled_buffers_.resize(number_of_streams - 1);
encoded_images_.resize(number_of_streams);
encoders_.resize(number_of_streams);
pictures_.resize(number_of_streams);
svc_controllers_.resize(number_of_streams);
scalability_modes_.resize(number_of_streams);
configurations_.resize(number_of_streams);
tl0sync_limit_.resize(number_of_streams);
max_payload_size_ = settings.max_payload_size;
number_of_cores_ = settings.number_of_cores;
encoder_thread_limit_ = settings.encoder_thread_limit;
codec_ = *inst;
// Code expects simulcastStream resolutions to be correct, make sure they are
// filled even when there are no simulcast layers.
if (codec_.numberOfSimulcastStreams == 0) {
codec_.simulcastStream[0].width = codec_.width;
codec_.simulcastStream[0].height = codec_.height;
}
for (int i = 0, idx = number_of_streams - 1; i < number_of_streams;
++i, --idx) {
ISVCEncoder* openh264_encoder;
// Create encoder.
if (WelsCreateSVCEncoder(&openh264_encoder) != 0) {
// Failed to create encoder.
RTC_LOG(LS_ERROR) << "Failed to create OpenH264 encoder";
RTC_DCHECK(!openh264_encoder);
Release();
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
RTC_DCHECK(openh264_encoder);
if (kOpenH264EncoderDetailedLogging) {
int trace_level = WELS_LOG_DETAIL;
openh264_encoder->SetOption(ENCODER_OPTION_TRACE_LEVEL, &trace_level);
}
// else WELS_LOG_DEFAULT is used by default.
// Store h264 encoder.
encoders_[i] = openh264_encoder;
// Set internal settings from codec_settings
configurations_[i].simulcast_idx = idx;
configurations_[i].sending = false;
configurations_[i].width = codec_.simulcastStream[idx].width;
configurations_[i].height = codec_.simulcastStream[idx].height;
configurations_[i].max_frame_rate = static_cast<float>(codec_.maxFramerate);
configurations_[i].frame_dropping_on = codec_.GetFrameDropEnabled();
configurations_[i].key_frame_interval = codec_.H264()->keyFrameInterval;
configurations_[i].num_temporal_layers =
std::max(codec_.H264()->numberOfTemporalLayers,
codec_.simulcastStream[idx].numberOfTemporalLayers);
// Create downscaled image buffers.
if (i > 0) {
downscaled_buffers_[i - 1] = I420Buffer::Create(
configurations_[i].width, configurations_[i].height,
configurations_[i].width, configurations_[i].width / 2,
configurations_[i].width / 2);
}
// Codec_settings uses kbits/second; encoder uses bits/second.
configurations_[i].max_bps = codec_.maxBitrate * 1000;
configurations_[i].target_bps = codec_.startBitrate * 1000;
// Create encoder parameters based on the layer configuration.
SEncParamExt encoder_params = CreateEncoderParams(i);
// Initialize.
if (openh264_encoder->InitializeExt(&encoder_params) != 0) {
RTC_LOG(LS_ERROR) << "Failed to initialize OpenH264 encoder";
Release();
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
// TODO(pbos): Base init params on these values before submitting.
int video_format = EVideoFormatType::videoFormatI420;
openh264_encoder->SetOption(ENCODER_OPTION_DATAFORMAT, &video_format);
// Initialize encoded image. Default buffer size: size of unencoded data.
const size_t new_capacity =
CalcBufferSize(VideoType::kI420, codec_.simulcastStream[idx].width,
codec_.simulcastStream[idx].height);
encoded_images_[i].SetEncodedData(EncodedImageBuffer::Create(new_capacity));
encoded_images_[i]._encodedWidth = codec_.simulcastStream[idx].width;
encoded_images_[i]._encodedHeight = codec_.simulcastStream[idx].height;
encoded_images_[i].set_size(0);
tl0sync_limit_[i] = configurations_[i].num_temporal_layers;
scalability_modes_[i] = ScalabilityModeFromTemporalLayers(
configurations_[i].num_temporal_layers);
if (scalability_modes_[i].has_value()) {
svc_controllers_[i] = CreateScalabilityStructure(*scalability_modes_[i]);
if (svc_controllers_[i] == nullptr) {
RTC_LOG(LS_ERROR) << "Failed to create scalability structure";
Release();
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
}
}
SimulcastRateAllocator init_allocator(codec_);
VideoBitrateAllocation allocation =
init_allocator.Allocate(VideoBitrateAllocationParameters(
DataRate::KilobitsPerSec(codec_.startBitrate), codec_.maxFramerate));
SetRates(RateControlParameters(allocation, codec_.maxFramerate));
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t H264EncoderImpl::Release() {
while (!encoders_.empty()) {
ISVCEncoder* openh264_encoder = encoders_.back();
if (openh264_encoder) {
RTC_CHECK_EQ(0, openh264_encoder->Uninitialize());
WelsDestroySVCEncoder(openh264_encoder);
}
encoders_.pop_back();
}
downscaled_buffers_.clear();
configurations_.clear();
encoded_images_.clear();
pictures_.clear();
tl0sync_limit_.clear();
svc_controllers_.clear();
scalability_modes_.clear();
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t H264EncoderImpl::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
encoded_image_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
void H264EncoderImpl::SetRates(const RateControlParameters& parameters) {
if (encoders_.empty()) {
RTC_LOG(LS_WARNING) << "SetRates() while uninitialized.";
return;
}
if (parameters.framerate_fps < 1.0) {
RTC_LOG(LS_WARNING) << "Invalid frame rate: " << parameters.framerate_fps;
return;
}
if (parameters.bitrate.get_sum_bps() == 0) {
// Encoder paused, turn off all encoding.
for (size_t i = 0; i < configurations_.size(); ++i) {
configurations_[i].SetStreamState(false);
}
return;
}
codec_.maxFramerate = static_cast<uint32_t>(parameters.framerate_fps);
size_t stream_idx = encoders_.size() - 1;
for (size_t i = 0; i < encoders_.size(); ++i, --stream_idx) {
// Update layer config.
configurations_[i].target_bps =
parameters.bitrate.GetSpatialLayerSum(stream_idx);
configurations_[i].max_frame_rate = parameters.framerate_fps;
if (configurations_[i].target_bps) {
configurations_[i].SetStreamState(true);
// Update h264 encoder.
SBitrateInfo target_bitrate;
memset(&target_bitrate, 0, sizeof(SBitrateInfo));
target_bitrate.iLayer = SPATIAL_LAYER_ALL,
target_bitrate.iBitrate = configurations_[i].target_bps;
encoders_[i]->SetOption(ENCODER_OPTION_BITRATE, &target_bitrate);
encoders_[i]->SetOption(ENCODER_OPTION_FRAME_RATE,
&configurations_[i].max_frame_rate);
} else {
configurations_[i].SetStreamState(false);
}
}
}
int32_t H264EncoderImpl::Encode(
const VideoFrame& input_frame,
const std::vector<VideoFrameType>* frame_types) {
if (encoders_.empty()) {
ReportError();
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (!encoded_image_callback_) {
RTC_LOG(LS_WARNING)
<< "InitEncode() has been called, but a callback function "
"has not been set with RegisterEncodeCompleteCallback()";
ReportError();
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
rtc::scoped_refptr<I420BufferInterface> frame_buffer =
input_frame.video_frame_buffer()->ToI420();
if (!frame_buffer) {
RTC_LOG(LS_ERROR) << "Failed to convert "
<< VideoFrameBufferTypeToString(
input_frame.video_frame_buffer()->type())
<< " image to I420. Can't encode frame.";
return WEBRTC_VIDEO_CODEC_ENCODER_FAILURE;
}
RTC_CHECK(frame_buffer->type() == VideoFrameBuffer::Type::kI420 ||
frame_buffer->type() == VideoFrameBuffer::Type::kI420A);
bool is_keyframe_needed = false;
for (size_t i = 0; i < configurations_.size(); ++i) {
if (configurations_[i].key_frame_request && configurations_[i].sending) {
// This is legacy behavior, generating a keyframe on all layers
// when generating one for a layer that became active for the first time
// or after being disabled.
is_keyframe_needed = true;
break;
}
}
RTC_DCHECK_EQ(configurations_[0].width, frame_buffer->width());
RTC_DCHECK_EQ(configurations_[0].height, frame_buffer->height());
// Encode image for each layer.
for (size_t i = 0; i < encoders_.size(); ++i) {
// EncodeFrame input.
pictures_[i] = {0};
pictures_[i].iPicWidth = configurations_[i].width;
pictures_[i].iPicHeight = configurations_[i].height;
pictures_[i].iColorFormat = EVideoFormatType::videoFormatI420;
pictures_[i].uiTimeStamp = input_frame.ntp_time_ms();
// Downscale images on second and ongoing layers.
if (i == 0) {
pictures_[i].iStride[0] = frame_buffer->StrideY();
pictures_[i].iStride[1] = frame_buffer->StrideU();
pictures_[i].iStride[2] = frame_buffer->StrideV();
pictures_[i].pData[0] = const_cast<uint8_t*>(frame_buffer->DataY());
pictures_[i].pData[1] = const_cast<uint8_t*>(frame_buffer->DataU());
pictures_[i].pData[2] = const_cast<uint8_t*>(frame_buffer->DataV());
} else {
pictures_[i].iStride[0] = downscaled_buffers_[i - 1]->StrideY();
pictures_[i].iStride[1] = downscaled_buffers_[i - 1]->StrideU();
pictures_[i].iStride[2] = downscaled_buffers_[i - 1]->StrideV();
pictures_[i].pData[0] =
const_cast<uint8_t*>(downscaled_buffers_[i - 1]->DataY());
pictures_[i].pData[1] =
const_cast<uint8_t*>(downscaled_buffers_[i - 1]->DataU());
pictures_[i].pData[2] =
const_cast<uint8_t*>(downscaled_buffers_[i - 1]->DataV());
// Scale the image down a number of times by downsampling factor.
libyuv::I420Scale(pictures_[i - 1].pData[0], pictures_[i - 1].iStride[0],
pictures_[i - 1].pData[1], pictures_[i - 1].iStride[1],
pictures_[i - 1].pData[2], pictures_[i - 1].iStride[2],
configurations_[i - 1].width,
configurations_[i - 1].height, pictures_[i].pData[0],
pictures_[i].iStride[0], pictures_[i].pData[1],
pictures_[i].iStride[1], pictures_[i].pData[2],
pictures_[i].iStride[2], configurations_[i].width,
configurations_[i].height, libyuv::kFilterBox);
}
if (!configurations_[i].sending) {
continue;
}
if (frame_types != nullptr && i < frame_types->size()) {
// Skip frame?
if ((*frame_types)[i] == VideoFrameType::kEmptyFrame) {
continue;
}
}
// Send a key frame either when this layer is configured to require one
// or we have explicitly been asked to.
const size_t simulcast_idx =
static_cast<size_t>(configurations_[i].simulcast_idx);
bool send_key_frame =
is_keyframe_needed ||
(frame_types && simulcast_idx < frame_types->size() &&
(*frame_types)[simulcast_idx] == VideoFrameType::kVideoFrameKey);
if (send_key_frame) {
// API doc says ForceIntraFrame(false) does nothing, but calling this
// function forces a key frame regardless of the `bIDR` argument's value.
// (If every frame is a key frame we get lag/delays.)
encoders_[i]->ForceIntraFrame(true);
configurations_[i].key_frame_request = false;
}
// EncodeFrame output.
SFrameBSInfo info;
memset(&info, 0, sizeof(SFrameBSInfo));
std::vector<ScalableVideoController::LayerFrameConfig> layer_frames;
if (svc_controllers_[i]) {
layer_frames = svc_controllers_[i]->NextFrameConfig(send_key_frame);
RTC_CHECK_EQ(layer_frames.size(), 1);
}
// Encode!
int enc_ret = encoders_[i]->EncodeFrame(&pictures_[i], &info);
if (enc_ret != 0) {
RTC_LOG(LS_ERROR)
<< "OpenH264 frame encoding failed, EncodeFrame returned " << enc_ret
<< ".";
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
encoded_images_[i]._encodedWidth = configurations_[i].width;
encoded_images_[i]._encodedHeight = configurations_[i].height;
encoded_images_[i].SetRtpTimestamp(input_frame.timestamp());
encoded_images_[i].SetColorSpace(input_frame.color_space());
encoded_images_[i]._frameType = ConvertToVideoFrameType(info.eFrameType);
encoded_images_[i].SetSimulcastIndex(configurations_[i].simulcast_idx);
// Split encoded image up into fragments. This also updates
// `encoded_image_`.
RtpFragmentize(&encoded_images_[i], &info);
// Encoder can skip frames to save bandwidth in which case
// `encoded_images_[i]._length` == 0.
if (encoded_images_[i].size() > 0) {
// Parse QP.
h264_bitstream_parser_.ParseBitstream(encoded_images_[i]);
encoded_images_[i].qp_ =
h264_bitstream_parser_.GetLastSliceQp().value_or(-1);
// Deliver encoded image.
CodecSpecificInfo codec_specific;
codec_specific.codecType = kVideoCodecH264;
codec_specific.codecSpecific.H264.packetization_mode =
packetization_mode_;
codec_specific.codecSpecific.H264.temporal_idx = kNoTemporalIdx;
codec_specific.codecSpecific.H264.idr_frame =
info.eFrameType == videoFrameTypeIDR;
codec_specific.codecSpecific.H264.base_layer_sync = false;
if (configurations_[i].num_temporal_layers > 1) {
const uint8_t tid = info.sLayerInfo[0].uiTemporalId;
codec_specific.codecSpecific.H264.temporal_idx = tid;
codec_specific.codecSpecific.H264.base_layer_sync =
tid > 0 && tid < tl0sync_limit_[i];
if (svc_controllers_[i]) {
if (encoded_images_[i]._frameType == VideoFrameType::kVideoFrameKey) {
// Reset the ScalableVideoController on key frame
// to reset the expected dependency structure.
layer_frames =
svc_controllers_[i]->NextFrameConfig(/* restart= */ true);
RTC_CHECK_EQ(layer_frames.size(), 1);
RTC_DCHECK_EQ(layer_frames[0].TemporalId(), 0);
RTC_DCHECK_EQ(layer_frames[0].IsKeyframe(), true);
}
if (layer_frames[0].TemporalId() != tid) {
RTC_LOG(LS_WARNING)
<< "Encoder produced a frame with temporal id " << tid
<< ", expected " << layer_frames[0].TemporalId() << ".";
continue;
}
encoded_images_[i].SetTemporalIndex(tid);
}
if (codec_specific.codecSpecific.H264.base_layer_sync) {
tl0sync_limit_[i] = tid;
}
if (tid == 0) {
tl0sync_limit_[i] = configurations_[i].num_temporal_layers;
}
}
if (svc_controllers_[i]) {
codec_specific.generic_frame_info =
svc_controllers_[i]->OnEncodeDone(layer_frames[0]);
if (send_key_frame && codec_specific.generic_frame_info.has_value()) {
codec_specific.template_structure =
svc_controllers_[i]->DependencyStructure();
}
codec_specific.scalability_mode = scalability_modes_[i];
}
encoded_image_callback_->OnEncodedImage(encoded_images_[i],
&codec_specific);
}
}
return WEBRTC_VIDEO_CODEC_OK;
}
// Initialization parameters.
// There are two ways to initialize. There is SEncParamBase (cleared with
// memset(&p, 0, sizeof(SEncParamBase)) used in Initialize, and SEncParamExt
// which is a superset of SEncParamBase (cleared with GetDefaultParams) used
// in InitializeExt.
SEncParamExt H264EncoderImpl::CreateEncoderParams(size_t i) const {
SEncParamExt encoder_params;
encoders_[i]->GetDefaultParams(&encoder_params);
if (codec_.mode == VideoCodecMode::kRealtimeVideo) {
encoder_params.iUsageType = CAMERA_VIDEO_REAL_TIME;
} else if (codec_.mode == VideoCodecMode::kScreensharing) {
encoder_params.iUsageType = SCREEN_CONTENT_REAL_TIME;
} else {
RTC_DCHECK_NOTREACHED();
}
encoder_params.iPicWidth = configurations_[i].width;
encoder_params.iPicHeight = configurations_[i].height;
encoder_params.iTargetBitrate = configurations_[i].target_bps;
// Keep unspecified. WebRTC's max codec bitrate is not the same setting
// as OpenH264's iMaxBitrate. More details in https://crbug.com/webrtc/11543
encoder_params.iMaxBitrate = UNSPECIFIED_BIT_RATE;
// Rate Control mode
encoder_params.iRCMode = RC_BITRATE_MODE;
encoder_params.fMaxFrameRate = configurations_[i].max_frame_rate;
// The following parameters are extension parameters (they're in SEncParamExt,
// not in SEncParamBase).
encoder_params.bEnableFrameSkip = configurations_[i].frame_dropping_on;
// `uiIntraPeriod` - multiple of GOP size
// `keyFrameInterval` - number of frames
encoder_params.uiIntraPeriod = configurations_[i].key_frame_interval;
// Reuse SPS id if possible. This helps to avoid reset of chromium HW decoder
// on each key-frame.
// Note that WebRTC resets encoder on resolution change which makes all
// EParameterSetStrategy modes except INCREASING_ID (default) essentially
// equivalent to CONSTANT_ID.
encoder_params.eSpsPpsIdStrategy = SPS_LISTING;
encoder_params.uiMaxNalSize = 0;
// Threading model: use auto.
// 0: auto (dynamic imp. internal encoder)
// 1: single thread (default value)
// >1: number of threads
encoder_params.iMultipleThreadIdc =
NumberOfThreads(encoder_thread_limit_, encoder_params.iPicWidth,
encoder_params.iPicHeight, number_of_cores_);
// The base spatial layer 0 is the only one we use.
encoder_params.sSpatialLayers[0].iVideoWidth = encoder_params.iPicWidth;
encoder_params.sSpatialLayers[0].iVideoHeight = encoder_params.iPicHeight;
encoder_params.sSpatialLayers[0].fFrameRate = encoder_params.fMaxFrameRate;
encoder_params.sSpatialLayers[0].iSpatialBitrate =
encoder_params.iTargetBitrate;
encoder_params.sSpatialLayers[0].iMaxSpatialBitrate =
encoder_params.iMaxBitrate;
encoder_params.iTemporalLayerNum = configurations_[i].num_temporal_layers;
if (encoder_params.iTemporalLayerNum > 1) {
// iNumRefFrame specifies total number of reference buffers to allocate.
// For N temporal layers we need at least (N - 1) buffers to store last
// encoded frames of all reference temporal layers.
// Note that there is no API in OpenH264 encoder to specify exact set of
// references to be used to prediction of a given frame. Encoder can
// theoretically use all available reference buffers.
encoder_params.iNumRefFrame = encoder_params.iTemporalLayerNum - 1;
}
RTC_LOG(LS_INFO) << "OpenH264 version is " << OPENH264_MAJOR << "."
<< OPENH264_MINOR;
switch (packetization_mode_) {
case H264PacketizationMode::SingleNalUnit:
// Limit the size of the packets produced.
encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1;
encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode =
SM_SIZELIMITED_SLICE;
encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceSizeConstraint =
static_cast<unsigned int>(max_payload_size_);
RTC_LOG(LS_INFO) << "Encoder is configured with NALU constraint: "
<< max_payload_size_ << " bytes";
break;
case H264PacketizationMode::NonInterleaved:
// When uiSliceMode = SM_FIXEDSLCNUM_SLICE, uiSliceNum = 0 means auto
// design it with cpu core number.
// TODO(sprang): Set to 0 when we understand why the rate controller borks
// when uiSliceNum > 1.
encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1;
encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode =
SM_FIXEDSLCNUM_SLICE;
break;
}
return encoder_params;
}
void H264EncoderImpl::ReportInit() {
if (has_reported_init_)
return;
RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event",
kH264EncoderEventInit, kH264EncoderEventMax);
has_reported_init_ = true;
}
void H264EncoderImpl::ReportError() {
if (has_reported_error_)
return;
RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event",
kH264EncoderEventError, kH264EncoderEventMax);
has_reported_error_ = true;
}
VideoEncoder::EncoderInfo H264EncoderImpl::GetEncoderInfo() const {
EncoderInfo info;
info.supports_native_handle = false;
info.implementation_name = "OpenH264";
info.scaling_settings =
VideoEncoder::ScalingSettings(kLowH264QpThreshold, kHighH264QpThreshold);
info.is_hardware_accelerated = false;
info.supports_simulcast = true;
info.preferred_pixel_formats = {VideoFrameBuffer::Type::kI420};
return info;
}
void H264EncoderImpl::LayerConfig::SetStreamState(bool send_stream) {
if (send_stream && !sending) {
// Need a key frame if we have not sent this stream before.
key_frame_request = true;
}
sending = send_stream;
}
} // namespace webrtc
#endif // WEBRTC_USE_H264

View file

@ -0,0 +1,126 @@
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#ifndef MODULES_VIDEO_CODING_CODECS_H264_H264_ENCODER_IMPL_H_
#define MODULES_VIDEO_CODING_CODECS_H264_H264_ENCODER_IMPL_H_
// Everything declared in this header is only required when WebRTC is
// build with H264 support, please do not move anything out of the
// #ifdef unless needed and tested.
#ifdef WEBRTC_USE_H264
#if defined(WEBRTC_WIN) && !defined(__clang__)
#error "See: bugs.webrtc.org/9213#c13."
#endif
#include <memory>
#include <vector>
#include "absl/container/inlined_vector.h"
#include "api/transport/rtp/dependency_descriptor.h"
#include "api/video/i420_buffer.h"
#include "api/video/video_codec_constants.h"
#include "api/video_codecs/scalability_mode.h"
#include "api/video_codecs/video_encoder.h"
#include "common_video/h264/h264_bitstream_parser.h"
#include "modules/video_coding/codecs/h264/include/h264.h"
#include "modules/video_coding/svc/scalable_video_controller.h"
#include "modules/video_coding/utility/quality_scaler.h"
#include "third_party/openh264/src/codec/api/svc/codec_app_def.h"
class ISVCEncoder;
namespace webrtc {
class H264EncoderImpl : public H264Encoder {
public:
struct LayerConfig {
int simulcast_idx = 0;
int width = -1;
int height = -1;
bool sending = true;
bool key_frame_request = false;
float max_frame_rate = 0;
uint32_t target_bps = 0;
uint32_t max_bps = 0;
bool frame_dropping_on = false;
int key_frame_interval = 0;
int num_temporal_layers = 1;
void SetStreamState(bool send_stream);
};
public:
explicit H264EncoderImpl(const cricket::VideoCodec& codec);
~H264EncoderImpl() override;
// `settings.max_payload_size` is ignored.
// The following members of `codec_settings` are used. The rest are ignored.
// - codecType (must be kVideoCodecH264)
// - targetBitrate
// - maxFramerate
// - width
// - height
int32_t InitEncode(const VideoCodec* codec_settings,
const VideoEncoder::Settings& settings) override;
int32_t Release() override;
int32_t RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) override;
void SetRates(const RateControlParameters& parameters) override;
// The result of encoding - an EncodedImage and CodecSpecificInfo - are
// passed to the encode complete callback.
int32_t Encode(const VideoFrame& frame,
const std::vector<VideoFrameType>* frame_types) override;
EncoderInfo GetEncoderInfo() const override;
// Exposed for testing.
H264PacketizationMode PacketizationModeForTesting() const {
return packetization_mode_;
}
private:
SEncParamExt CreateEncoderParams(size_t i) const;
webrtc::H264BitstreamParser h264_bitstream_parser_;
// Reports statistics with histograms.
void ReportInit();
void ReportError();
std::vector<ISVCEncoder*> encoders_;
std::vector<SSourcePicture> pictures_;
std::vector<rtc::scoped_refptr<I420Buffer>> downscaled_buffers_;
std::vector<LayerConfig> configurations_;
std::vector<EncodedImage> encoded_images_;
std::vector<std::unique_ptr<ScalableVideoController>> svc_controllers_;
absl::InlinedVector<absl::optional<ScalabilityMode>, kMaxSimulcastStreams>
scalability_modes_;
VideoCodec codec_;
H264PacketizationMode packetization_mode_;
size_t max_payload_size_;
int32_t number_of_cores_;
absl::optional<int> encoder_thread_limit_;
EncodedImageCallback* encoded_image_callback_;
bool has_reported_init_;
bool has_reported_error_;
std::vector<uint8_t> tl0sync_limit_;
};
} // namespace webrtc
#endif // WEBRTC_USE_H264
#endif // MODULES_VIDEO_CODING_CODECS_H264_H264_ENCODER_IMPL_H_

View file

@ -0,0 +1,89 @@
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#include "modules/video_coding/codecs/h264/h264_encoder_impl.h"
#include "api/video_codecs/video_encoder.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
const int kMaxPayloadSize = 1024;
const int kNumCores = 1;
const VideoEncoder::Capabilities kCapabilities(false);
const VideoEncoder::Settings kSettings(kCapabilities,
kNumCores,
kMaxPayloadSize);
void SetDefaultSettings(VideoCodec* codec_settings) {
codec_settings->codecType = kVideoCodecH264;
codec_settings->maxFramerate = 60;
codec_settings->width = 640;
codec_settings->height = 480;
// If frame dropping is false, we get a warning that bitrate can't
// be controlled for RC_QUALITY_MODE; RC_BITRATE_MODE and RC_TIMESTAMP_MODE
codec_settings->SetFrameDropEnabled(true);
codec_settings->startBitrate = 2000;
codec_settings->maxBitrate = 4000;
}
TEST(H264EncoderImplTest, CanInitializeWithDefaultParameters) {
H264EncoderImpl encoder(cricket::CreateVideoCodec("H264"));
VideoCodec codec_settings;
SetDefaultSettings(&codec_settings);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder.InitEncode(&codec_settings, kSettings));
EXPECT_EQ(H264PacketizationMode::NonInterleaved,
encoder.PacketizationModeForTesting());
}
TEST(H264EncoderImplTest, CanInitializeWithNonInterleavedModeExplicitly) {
cricket::VideoCodec codec = cricket::CreateVideoCodec("H264");
codec.SetParam(cricket::kH264FmtpPacketizationMode, "1");
H264EncoderImpl encoder(codec);
VideoCodec codec_settings;
SetDefaultSettings(&codec_settings);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder.InitEncode(&codec_settings, kSettings));
EXPECT_EQ(H264PacketizationMode::NonInterleaved,
encoder.PacketizationModeForTesting());
}
TEST(H264EncoderImplTest, CanInitializeWithSingleNalUnitModeExplicitly) {
cricket::VideoCodec codec = cricket::CreateVideoCodec("H264");
codec.SetParam(cricket::kH264FmtpPacketizationMode, "0");
H264EncoderImpl encoder(codec);
VideoCodec codec_settings;
SetDefaultSettings(&codec_settings);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder.InitEncode(&codec_settings, kSettings));
EXPECT_EQ(H264PacketizationMode::SingleNalUnit,
encoder.PacketizationModeForTesting());
}
TEST(H264EncoderImplTest, CanInitializeWithRemovedParameter) {
cricket::VideoCodec codec = cricket::CreateVideoCodec("H264");
codec.RemoveParam(cricket::kH264FmtpPacketizationMode);
H264EncoderImpl encoder(codec);
VideoCodec codec_settings;
SetDefaultSettings(&codec_settings);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder.InitEncode(&codec_settings, kSettings));
EXPECT_EQ(H264PacketizationMode::SingleNalUnit,
encoder.PacketizationModeForTesting());
}
} // anonymous namespace
} // namespace webrtc

View file

@ -0,0 +1,107 @@
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include "api/test/create_simulcast_test_fixture.h"
#include "api/test/simulcast_test_fixture.h"
#include "api/test/video/function_video_decoder_factory.h"
#include "api/test/video/function_video_encoder_factory.h"
#include "modules/video_coding/codecs/h264/include/h264.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
namespace {
std::unique_ptr<SimulcastTestFixture> CreateSpecificSimulcastTestFixture() {
std::unique_ptr<VideoEncoderFactory> encoder_factory =
std::make_unique<FunctionVideoEncoderFactory>(
[]() { return H264Encoder::Create(); });
std::unique_ptr<VideoDecoderFactory> decoder_factory =
std::make_unique<FunctionVideoDecoderFactory>(
[]() { return H264Decoder::Create(); });
return CreateSimulcastTestFixture(std::move(encoder_factory),
std::move(decoder_factory),
SdpVideoFormat("H264"));
}
} // namespace
TEST(TestH264Simulcast, TestKeyFrameRequestsOnAllStreams) {
GTEST_SKIP() << "Not applicable to H264.";
}
TEST(TestH264Simulcast, TestKeyFrameRequestsOnSpecificStreams) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestKeyFrameRequestsOnSpecificStreams();
}
TEST(TestH264Simulcast, TestPaddingAllStreams) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestPaddingAllStreams();
}
TEST(TestH264Simulcast, TestPaddingTwoStreams) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestPaddingTwoStreams();
}
TEST(TestH264Simulcast, TestPaddingTwoStreamsOneMaxedOut) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestPaddingTwoStreamsOneMaxedOut();
}
TEST(TestH264Simulcast, TestPaddingOneStream) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestPaddingOneStream();
}
TEST(TestH264Simulcast, TestPaddingOneStreamTwoMaxedOut) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestPaddingOneStreamTwoMaxedOut();
}
TEST(TestH264Simulcast, TestSendAllStreams) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestSendAllStreams();
}
TEST(TestH264Simulcast, TestDisablingStreams) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestDisablingStreams();
}
TEST(TestH264Simulcast, TestActiveStreams) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestActiveStreams();
}
TEST(TestH264Simulcast, TestSwitchingToOneStream) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestSwitchingToOneStream();
}
TEST(TestH264Simulcast, TestSwitchingToOneOddStream) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestSwitchingToOneOddStream();
}
TEST(TestH264Simulcast, TestStrideEncodeDecode) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestStrideEncodeDecode();
}
TEST(TestH264Simulcast, TestSpatioTemporalLayers333PatternEncoder) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestSpatioTemporalLayers333PatternEncoder();
}
} // namespace test
} // namespace webrtc

View file

@ -0,0 +1,73 @@
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#ifndef MODULES_VIDEO_CODING_CODECS_H264_INCLUDE_H264_H_
#define MODULES_VIDEO_CODING_CODECS_H264_INCLUDE_H264_H_
#include <memory>
#include <string>
#include <vector>
#include "api/video_codecs/h264_profile_level_id.h"
#include "api/video_codecs/scalability_mode.h"
#include "media/base/codec.h"
#include "modules/video_coding/include/video_codec_interface.h"
#include "rtc_base/system/rtc_export.h"
namespace webrtc {
struct SdpVideoFormat;
// Creates an H264 SdpVideoFormat entry with specified paramters.
RTC_EXPORT SdpVideoFormat
CreateH264Format(H264Profile profile,
H264Level level,
const std::string& packetization_mode,
bool add_scalability_modes = false);
// Set to disable the H.264 encoder/decoder implementations that are provided if
// `rtc_use_h264` build flag is true (if false, this function does nothing).
// This function should only be called before or during WebRTC initialization
// and is not thread-safe.
RTC_EXPORT void DisableRtcUseH264();
// Returns a vector with all supported internal H264 encode profiles that we can
// negotiate in SDP, in order of preference.
std::vector<SdpVideoFormat> SupportedH264Codecs(
bool add_scalability_modes = false);
// Returns a vector with all supported internal H264 decode profiles that we can
// negotiate in SDP, in order of preference. This will be available for receive
// only connections.
std::vector<SdpVideoFormat> SupportedH264DecoderCodecs();
class RTC_EXPORT H264Encoder : public VideoEncoder {
public:
static std::unique_ptr<H264Encoder> Create(const cricket::VideoCodec& codec);
static std::unique_ptr<H264Encoder> Create();
// If H.264 is supported (any implementation).
static bool IsSupported();
static bool SupportsScalabilityMode(ScalabilityMode scalability_mode);
~H264Encoder() override {}
};
class RTC_EXPORT H264Decoder : public VideoDecoder {
public:
static std::unique_ptr<H264Decoder> Create();
static bool IsSupported();
~H264Decoder() override {}
};
} // namespace webrtc
#endif // MODULES_VIDEO_CODING_CODECS_H264_INCLUDE_H264_H_

View file

@ -0,0 +1,109 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// This file contains codec dependent definitions that are needed in
// order to compile the WebRTC codebase, even if this codec is not used.
#ifndef MODULES_VIDEO_CODING_CODECS_H264_INCLUDE_H264_GLOBALS_H_
#define MODULES_VIDEO_CODING_CODECS_H264_INCLUDE_H264_GLOBALS_H_
#include <algorithm>
#include <string>
#include "modules/video_coding/codecs/interface/common_constants.h"
#include "rtc_base/checks.h"
namespace webrtc {
// The packetization types that we support: single, aggregated, and fragmented.
enum H264PacketizationTypes {
kH264SingleNalu, // This packet contains a single NAL unit.
kH264StapA, // This packet contains STAP-A (single time
// aggregation) packets. If this packet has an
// associated NAL unit type, it'll be for the
// first such aggregated packet.
kH264FuA, // This packet contains a FU-A (fragmentation
// unit) packet, meaning it is a part of a frame
// that was too large to fit into a single packet.
};
// Packetization modes are defined in RFC 6184 section 6
// Due to the structure containing this being initialized with zeroes
// in some places, and mode 1 being default, mode 1 needs to have the value
// zero. https://crbug.com/webrtc/6803
enum class H264PacketizationMode {
NonInterleaved = 0, // Mode 1 - STAP-A, FU-A is allowed
SingleNalUnit // Mode 0 - only single NALU allowed
};
// This function is declared inline because it is not clear which
// .cc file it should belong to.
// TODO(hta): Refactor. https://bugs.webrtc.org/6842
// TODO(jonasolsson): Use absl::string_view instead when that's available.
inline std::string ToString(H264PacketizationMode mode) {
if (mode == H264PacketizationMode::NonInterleaved) {
return "NonInterleaved";
} else if (mode == H264PacketizationMode::SingleNalUnit) {
return "SingleNalUnit";
}
RTC_DCHECK_NOTREACHED();
return "";
}
struct NaluInfo {
uint8_t type;
int sps_id;
int pps_id;
friend bool operator==(const NaluInfo& lhs, const NaluInfo& rhs) {
return lhs.type == rhs.type && lhs.sps_id == rhs.sps_id &&
lhs.pps_id == rhs.pps_id;
}
friend bool operator!=(const NaluInfo& lhs, const NaluInfo& rhs) {
return !(lhs == rhs);
}
};
const size_t kMaxNalusPerPacket = 10;
struct RTPVideoHeaderH264 {
// The NAL unit type. If this is a header for a
// fragmented packet, it's the NAL unit type of
// the original data. If this is the header for an
// aggregated packet, it's the NAL unit type of
// the first NAL unit in the packet.
uint8_t nalu_type;
// The packetization type of this buffer - single, aggregated or fragmented.
H264PacketizationTypes packetization_type;
NaluInfo nalus[kMaxNalusPerPacket];
size_t nalus_length;
// The packetization mode of this transport. Packetization mode
// determines which packetization types are allowed when packetizing.
H264PacketizationMode packetization_mode;
friend bool operator==(const RTPVideoHeaderH264& lhs,
const RTPVideoHeaderH264& rhs) {
return lhs.nalu_type == rhs.nalu_type &&
lhs.packetization_type == rhs.packetization_type &&
std::equal(lhs.nalus, lhs.nalus + lhs.nalus_length, rhs.nalus,
rhs.nalus + rhs.nalus_length) &&
lhs.packetization_mode == rhs.packetization_mode;
}
friend bool operator!=(const RTPVideoHeaderH264& lhs,
const RTPVideoHeaderH264& rhs) {
return !(lhs == rhs);
}
};
} // namespace webrtc
#endif // MODULES_VIDEO_CODING_CODECS_H264_INCLUDE_H264_GLOBALS_H_

View file

@ -0,0 +1,99 @@
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdint.h>
#include <memory>
#include "absl/types/optional.h"
#include "api/video/color_space.h"
#include "api/video/encoded_image.h"
#include "api/video/video_frame.h"
#include "api/video_codecs/video_codec.h"
#include "api/video_codecs/video_decoder.h"
#include "api/video_codecs/video_encoder.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "media/base/codec.h"
#include "media/base/media_constants.h"
#include "modules/video_coding/codecs/h264/include/h264.h"
#include "modules/video_coding/codecs/test/video_codec_unittest.h"
#include "modules/video_coding/include/video_codec_interface.h"
#include "modules/video_coding/include/video_error_codes.h"
#include "test/gtest.h"
#include "test/video_codec_settings.h"
namespace webrtc {
class TestH264Impl : public VideoCodecUnitTest {
protected:
std::unique_ptr<VideoEncoder> CreateEncoder() override {
return H264Encoder::Create();
}
std::unique_ptr<VideoDecoder> CreateDecoder() override {
return H264Decoder::Create();
}
void ModifyCodecSettings(VideoCodec* codec_settings) override {
webrtc::test::CodecSettings(kVideoCodecH264, codec_settings);
}
};
#ifdef WEBRTC_USE_H264
#define MAYBE_EncodeDecode EncodeDecode
#define MAYBE_DecodedQpEqualsEncodedQp DecodedQpEqualsEncodedQp
#else
#define MAYBE_EncodeDecode DISABLED_EncodeDecode
#define MAYBE_DecodedQpEqualsEncodedQp DISABLED_DecodedQpEqualsEncodedQp
#endif
TEST_F(TestH264Impl, MAYBE_EncodeDecode) {
VideoFrame input_frame = NextInputFrame();
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, encoder_->Encode(input_frame, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
// First frame should be a key frame.
encoded_frame._frameType = VideoFrameType::kVideoFrameKey;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, decoder_->Decode(encoded_frame, 0));
std::unique_ptr<VideoFrame> decoded_frame;
absl::optional<uint8_t> decoded_qp;
ASSERT_TRUE(WaitForDecodedFrame(&decoded_frame, &decoded_qp));
ASSERT_TRUE(decoded_frame);
EXPECT_GT(I420PSNR(&input_frame, decoded_frame.get()), 36);
const ColorSpace color_space = *decoded_frame->color_space();
EXPECT_EQ(ColorSpace::PrimaryID::kUnspecified, color_space.primaries());
EXPECT_EQ(ColorSpace::TransferID::kUnspecified, color_space.transfer());
EXPECT_EQ(ColorSpace::MatrixID::kUnspecified, color_space.matrix());
EXPECT_EQ(ColorSpace::RangeID::kInvalid, color_space.range());
EXPECT_EQ(ColorSpace::ChromaSiting::kUnspecified,
color_space.chroma_siting_horizontal());
EXPECT_EQ(ColorSpace::ChromaSiting::kUnspecified,
color_space.chroma_siting_vertical());
}
TEST_F(TestH264Impl, MAYBE_DecodedQpEqualsEncodedQp) {
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, encoder_->Encode(NextInputFrame(), nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
// First frame should be a key frame.
encoded_frame._frameType = VideoFrameType::kVideoFrameKey;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, decoder_->Decode(encoded_frame, 0));
std::unique_ptr<VideoFrame> decoded_frame;
absl::optional<uint8_t> decoded_qp;
ASSERT_TRUE(WaitForDecodedFrame(&decoded_frame, &decoded_qp));
ASSERT_TRUE(decoded_frame);
ASSERT_TRUE(decoded_qp);
EXPECT_EQ(encoded_frame.qp_, *decoded_qp);
}
} // namespace webrtc