Repo created
This commit is contained in:
parent
81b91f4139
commit
f8c34fa5ee
22732 changed files with 4815320 additions and 2 deletions
|
|
@ -0,0 +1,447 @@
|
|||
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include <vector>
|
||||
|
||||
#include "base/debug/activity_tracker.h"
|
||||
#include "base/logging.h"
|
||||
#include "base/optional.h"
|
||||
#include "base/synchronization/condition_variable.h"
|
||||
#include "base/synchronization/lock.h"
|
||||
#include "base/synchronization/waitable_event.h"
|
||||
#include "base/threading/scoped_blocking_call.h"
|
||||
#include "base/threading/thread_restrictions.h"
|
||||
#include "base/time/time.h"
|
||||
#include "base/time/time_override.h"
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
|
||||
// support cross-process events (where one process can signal an event which
|
||||
// others are waiting on). Because of this, we can avoid having one thread per
|
||||
// listener in several cases.
|
||||
//
|
||||
// The WaitableEvent maintains a list of waiters, protected by a lock. Each
|
||||
// waiter is either an async wait, in which case we have a Task and the
|
||||
// MessageLoop to run it on, or a blocking wait, in which case we have the
|
||||
// condition variable to signal.
|
||||
//
|
||||
// Waiting involves grabbing the lock and adding oneself to the wait list. Async
|
||||
// waits can be canceled, which means grabbing the lock and removing oneself
|
||||
// from the list.
|
||||
//
|
||||
// Waiting on multiple events is handled by adding a single, synchronous wait to
|
||||
// the wait-list of many events. An event passes a pointer to itself when
|
||||
// firing a waiter and so we can store that pointer to find out which event
|
||||
// triggered.
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
namespace base {
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// This is just an abstract base class for waking the two types of waiters
|
||||
// -----------------------------------------------------------------------------
|
||||
WaitableEvent::WaitableEvent(ResetPolicy reset_policy,
|
||||
InitialState initial_state)
|
||||
: kernel_(new WaitableEventKernel(reset_policy, initial_state)) {}
|
||||
|
||||
WaitableEvent::~WaitableEvent() = default;
|
||||
|
||||
void WaitableEvent::Reset() {
|
||||
base::AutoLock locked(kernel_->lock_);
|
||||
kernel_->signaled_ = false;
|
||||
}
|
||||
|
||||
void WaitableEvent::Signal() {
|
||||
base::AutoLock locked(kernel_->lock_);
|
||||
|
||||
if (kernel_->signaled_)
|
||||
return;
|
||||
|
||||
if (kernel_->manual_reset_) {
|
||||
SignalAll();
|
||||
kernel_->signaled_ = true;
|
||||
} else {
|
||||
// In the case of auto reset, if no waiters were woken, we remain
|
||||
// signaled.
|
||||
if (!SignalOne())
|
||||
kernel_->signaled_ = true;
|
||||
}
|
||||
}
|
||||
|
||||
bool WaitableEvent::IsSignaled() {
|
||||
base::AutoLock locked(kernel_->lock_);
|
||||
|
||||
const bool result = kernel_->signaled_;
|
||||
if (result && !kernel_->manual_reset_)
|
||||
kernel_->signaled_ = false;
|
||||
return result;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Synchronous waits
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// This is a synchronous waiter. The thread is waiting on the given condition
|
||||
// variable and the fired flag in this object.
|
||||
// -----------------------------------------------------------------------------
|
||||
class SyncWaiter : public WaitableEvent::Waiter {
|
||||
public:
|
||||
SyncWaiter()
|
||||
: fired_(false), signaling_event_(nullptr), lock_(), cv_(&lock_) {}
|
||||
|
||||
bool Fire(WaitableEvent* signaling_event) override {
|
||||
base::AutoLock locked(lock_);
|
||||
|
||||
if (fired_)
|
||||
return false;
|
||||
|
||||
fired_ = true;
|
||||
signaling_event_ = signaling_event;
|
||||
|
||||
cv_.Broadcast();
|
||||
|
||||
// Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
|
||||
// the blocking thread's stack. There is no |delete this;| in Fire. The
|
||||
// SyncWaiter object is destroyed when it goes out of scope.
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
WaitableEvent* signaling_event() const {
|
||||
return signaling_event_;
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// These waiters are always stack allocated and don't delete themselves. Thus
|
||||
// there's no problem and the ABA tag is the same as the object pointer.
|
||||
// ---------------------------------------------------------------------------
|
||||
bool Compare(void* tag) override { return this == tag; }
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// Called with lock held.
|
||||
// ---------------------------------------------------------------------------
|
||||
bool fired() const {
|
||||
return fired_;
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// During a TimedWait, we need a way to make sure that an auto-reset
|
||||
// WaitableEvent doesn't think that this event has been signaled between
|
||||
// unlocking it and removing it from the wait-list. Called with lock held.
|
||||
// ---------------------------------------------------------------------------
|
||||
void Disable() {
|
||||
fired_ = true;
|
||||
}
|
||||
|
||||
base::Lock* lock() {
|
||||
return &lock_;
|
||||
}
|
||||
|
||||
base::ConditionVariable* cv() {
|
||||
return &cv_;
|
||||
}
|
||||
|
||||
private:
|
||||
bool fired_;
|
||||
WaitableEvent* signaling_event_; // The WaitableEvent which woke us
|
||||
base::Lock lock_;
|
||||
base::ConditionVariable cv_;
|
||||
};
|
||||
|
||||
void WaitableEvent::Wait() {
|
||||
bool result = TimedWait(TimeDelta::Max());
|
||||
DCHECK(result) << "TimedWait() should never fail with infinite timeout";
|
||||
}
|
||||
|
||||
bool WaitableEvent::TimedWait(const TimeDelta& wait_delta) {
|
||||
if (wait_delta <= TimeDelta())
|
||||
return IsSignaled();
|
||||
|
||||
// Record the event that this thread is blocking upon (for hang diagnosis) and
|
||||
// consider it blocked for scheduling purposes. Ignore this for non-blocking
|
||||
// WaitableEvents.
|
||||
Optional<debug::ScopedEventWaitActivity> event_activity;
|
||||
Optional<internal::ScopedBlockingCallWithBaseSyncPrimitives>
|
||||
scoped_blocking_call;
|
||||
if (waiting_is_blocking_) {
|
||||
event_activity.emplace(this);
|
||||
scoped_blocking_call.emplace(FROM_HERE, BlockingType::MAY_BLOCK);
|
||||
}
|
||||
|
||||
kernel_->lock_.Acquire();
|
||||
if (kernel_->signaled_) {
|
||||
if (!kernel_->manual_reset_) {
|
||||
// In this case we were signaled when we had no waiters. Now that
|
||||
// someone has waited upon us, we can automatically reset.
|
||||
kernel_->signaled_ = false;
|
||||
}
|
||||
|
||||
kernel_->lock_.Release();
|
||||
return true;
|
||||
}
|
||||
|
||||
SyncWaiter sw;
|
||||
if (!waiting_is_blocking_)
|
||||
sw.cv()->declare_only_used_while_idle();
|
||||
sw.lock()->Acquire();
|
||||
|
||||
Enqueue(&sw);
|
||||
kernel_->lock_.Release();
|
||||
// We are violating locking order here by holding the SyncWaiter lock but not
|
||||
// the WaitableEvent lock. However, this is safe because we don't lock |lock_|
|
||||
// again before unlocking it.
|
||||
|
||||
// TimeTicks takes care of overflow but we special case is_max() nonetheless
|
||||
// to avoid invoking TimeTicksNowIgnoringOverride() unnecessarily (same for
|
||||
// the increment step of the for loop if the condition variable returns
|
||||
// early). Ref: https://crbug.com/910524#c7
|
||||
const TimeTicks end_time =
|
||||
wait_delta.is_max() ? TimeTicks::Max()
|
||||
: subtle::TimeTicksNowIgnoringOverride() + wait_delta;
|
||||
for (TimeDelta remaining = wait_delta; remaining > TimeDelta() && !sw.fired();
|
||||
remaining = end_time.is_max()
|
||||
? TimeDelta::Max()
|
||||
: end_time - subtle::TimeTicksNowIgnoringOverride()) {
|
||||
if (end_time.is_max())
|
||||
sw.cv()->Wait();
|
||||
else
|
||||
sw.cv()->TimedWait(remaining);
|
||||
}
|
||||
|
||||
// Get the SyncWaiter signaled state before releasing the lock.
|
||||
const bool return_value = sw.fired();
|
||||
|
||||
// We can't acquire |lock_| before releasing the SyncWaiter lock (because of
|
||||
// locking order), however, in between the two a signal could be fired and
|
||||
// |sw| would accept it, however we will still return false, so the signal
|
||||
// would be lost on an auto-reset WaitableEvent. Thus we call Disable which
|
||||
// makes sw::Fire return false.
|
||||
sw.Disable();
|
||||
sw.lock()->Release();
|
||||
|
||||
// This is a bug that has been enshrined in the interface of WaitableEvent
|
||||
// now: |Dequeue| is called even when |sw.fired()| is true, even though it'll
|
||||
// always return false in that case. However, taking the lock ensures that
|
||||
// |Signal| has completed before we return and means that a WaitableEvent can
|
||||
// synchronise its own destruction.
|
||||
kernel_->lock_.Acquire();
|
||||
kernel_->Dequeue(&sw, &sw);
|
||||
kernel_->lock_.Release();
|
||||
|
||||
return return_value;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Synchronous waiting on multiple objects.
|
||||
|
||||
static bool // StrictWeakOrdering
|
||||
cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
|
||||
const std::pair<WaitableEvent*, unsigned> &b) {
|
||||
return a.first < b.first;
|
||||
}
|
||||
|
||||
// static
|
||||
// NO_THREAD_SAFETY_ANALYSIS: Complex control flow.
|
||||
size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
|
||||
size_t count) NO_THREAD_SAFETY_ANALYSIS {
|
||||
DCHECK(count) << "Cannot wait on no events";
|
||||
internal::ScopedBlockingCallWithBaseSyncPrimitives scoped_blocking_call(
|
||||
FROM_HERE, BlockingType::MAY_BLOCK);
|
||||
// Record an event (the first) that this thread is blocking upon.
|
||||
debug::ScopedEventWaitActivity event_activity(raw_waitables[0]);
|
||||
|
||||
// We need to acquire the locks in a globally consistent order. Thus we sort
|
||||
// the array of waitables by address. We actually sort a pairs so that we can
|
||||
// map back to the original index values later.
|
||||
std::vector<std::pair<WaitableEvent*, size_t> > waitables;
|
||||
waitables.reserve(count);
|
||||
for (size_t i = 0; i < count; ++i)
|
||||
waitables.push_back(std::make_pair(raw_waitables[i], i));
|
||||
|
||||
DCHECK_EQ(count, waitables.size());
|
||||
|
||||
sort(waitables.begin(), waitables.end(), cmp_fst_addr);
|
||||
|
||||
// The set of waitables must be distinct. Since we have just sorted by
|
||||
// address, we can check this cheaply by comparing pairs of consecutive
|
||||
// elements.
|
||||
for (size_t i = 0; i < waitables.size() - 1; ++i) {
|
||||
DCHECK(waitables[i].first != waitables[i+1].first);
|
||||
}
|
||||
|
||||
SyncWaiter sw;
|
||||
|
||||
const size_t r = EnqueueMany(&waitables[0], count, &sw);
|
||||
if (r < count) {
|
||||
// One of the events is already signaled. The SyncWaiter has not been
|
||||
// enqueued anywhere.
|
||||
return waitables[r].second;
|
||||
}
|
||||
|
||||
// At this point, we hold the locks on all the WaitableEvents and we have
|
||||
// enqueued our waiter in them all.
|
||||
sw.lock()->Acquire();
|
||||
// Release the WaitableEvent locks in the reverse order
|
||||
for (size_t i = 0; i < count; ++i) {
|
||||
waitables[count - (1 + i)].first->kernel_->lock_.Release();
|
||||
}
|
||||
|
||||
for (;;) {
|
||||
if (sw.fired())
|
||||
break;
|
||||
|
||||
sw.cv()->Wait();
|
||||
}
|
||||
sw.lock()->Release();
|
||||
|
||||
// The address of the WaitableEvent which fired is stored in the SyncWaiter.
|
||||
WaitableEvent *const signaled_event = sw.signaling_event();
|
||||
// This will store the index of the raw_waitables which fired.
|
||||
size_t signaled_index = 0;
|
||||
|
||||
// Take the locks of each WaitableEvent in turn (except the signaled one) and
|
||||
// remove our SyncWaiter from the wait-list
|
||||
for (size_t i = 0; i < count; ++i) {
|
||||
if (raw_waitables[i] != signaled_event) {
|
||||
raw_waitables[i]->kernel_->lock_.Acquire();
|
||||
// There's no possible ABA issue with the address of the SyncWaiter here
|
||||
// because it lives on the stack. Thus the tag value is just the pointer
|
||||
// value again.
|
||||
raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
|
||||
raw_waitables[i]->kernel_->lock_.Release();
|
||||
} else {
|
||||
// By taking this lock here we ensure that |Signal| has completed by the
|
||||
// time we return, because |Signal| holds this lock. This matches the
|
||||
// behaviour of |Wait| and |TimedWait|.
|
||||
raw_waitables[i]->kernel_->lock_.Acquire();
|
||||
raw_waitables[i]->kernel_->lock_.Release();
|
||||
signaled_index = i;
|
||||
}
|
||||
}
|
||||
|
||||
return signaled_index;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// If return value == count:
|
||||
// The locks of the WaitableEvents have been taken in order and the Waiter has
|
||||
// been enqueued in the wait-list of each. None of the WaitableEvents are
|
||||
// currently signaled
|
||||
// else:
|
||||
// None of the WaitableEvent locks are held. The Waiter has not been enqueued
|
||||
// in any of them and the return value is the index of the WaitableEvent which
|
||||
// was signaled with the lowest input index from the original WaitMany call.
|
||||
// -----------------------------------------------------------------------------
|
||||
// static
|
||||
// NO_THREAD_SAFETY_ANALYSIS: Complex control flow.
|
||||
size_t WaitableEvent::EnqueueMany(std::pair<WaitableEvent*, size_t>* waitables,
|
||||
size_t count,
|
||||
Waiter* waiter) NO_THREAD_SAFETY_ANALYSIS {
|
||||
size_t winner = count;
|
||||
size_t winner_index = count;
|
||||
for (size_t i = 0; i < count; ++i) {
|
||||
auto& kernel = waitables[i].first->kernel_;
|
||||
kernel->lock_.Acquire();
|
||||
if (kernel->signaled_ && waitables[i].second < winner) {
|
||||
winner = waitables[i].second;
|
||||
winner_index = i;
|
||||
}
|
||||
}
|
||||
|
||||
// No events signaled. All locks acquired. Enqueue the Waiter on all of them
|
||||
// and return.
|
||||
if (winner == count) {
|
||||
for (size_t i = 0; i < count; ++i)
|
||||
waitables[i].first->Enqueue(waiter);
|
||||
return count;
|
||||
}
|
||||
|
||||
// Unlock in reverse order and possibly clear the chosen winner's signal
|
||||
// before returning its index.
|
||||
for (auto* w = waitables + count - 1; w >= waitables; --w) {
|
||||
auto& kernel = w->first->kernel_;
|
||||
if (w->second == winner) {
|
||||
if (!kernel->manual_reset_)
|
||||
kernel->signaled_ = false;
|
||||
}
|
||||
kernel->lock_.Release();
|
||||
}
|
||||
|
||||
return winner_index;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Private functions...
|
||||
|
||||
WaitableEvent::WaitableEventKernel::WaitableEventKernel(
|
||||
ResetPolicy reset_policy,
|
||||
InitialState initial_state)
|
||||
: manual_reset_(reset_policy == ResetPolicy::MANUAL),
|
||||
signaled_(initial_state == InitialState::SIGNALED) {}
|
||||
|
||||
WaitableEvent::WaitableEventKernel::~WaitableEventKernel() = default;
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Wake all waiting waiters. Called with lock held.
|
||||
// -----------------------------------------------------------------------------
|
||||
bool WaitableEvent::SignalAll() {
|
||||
bool signaled_at_least_one = false;
|
||||
|
||||
for (auto* i : kernel_->waiters_) {
|
||||
if (i->Fire(this))
|
||||
signaled_at_least_one = true;
|
||||
}
|
||||
|
||||
kernel_->waiters_.clear();
|
||||
return signaled_at_least_one;
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// Try to wake a single waiter. Return true if one was woken. Called with lock
|
||||
// held.
|
||||
// ---------------------------------------------------------------------------
|
||||
bool WaitableEvent::SignalOne() {
|
||||
for (;;) {
|
||||
if (kernel_->waiters_.empty())
|
||||
return false;
|
||||
|
||||
const bool r = (*kernel_->waiters_.begin())->Fire(this);
|
||||
kernel_->waiters_.pop_front();
|
||||
if (r)
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Add a waiter to the list of those waiting. Called with lock held.
|
||||
// -----------------------------------------------------------------------------
|
||||
void WaitableEvent::Enqueue(Waiter* waiter) {
|
||||
kernel_->waiters_.push_back(waiter);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Remove a waiter from the list of those waiting. Return true if the waiter was
|
||||
// actually removed. Called with lock held.
|
||||
// -----------------------------------------------------------------------------
|
||||
bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
|
||||
for (auto i = waiters_.begin(); i != waiters_.end(); ++i) {
|
||||
if (*i == waiter && (*i)->Compare(tag)) {
|
||||
waiters_.erase(i);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
} // namespace base
|
||||
Loading…
Add table
Add a link
Reference in a new issue